• 什么是分布式锁?几种分布式锁分别是怎么实现的?


    一、什么是分布式锁:

    1、什么是分布式锁:

    分布式锁,即分布式系统中的锁。在单体应用中我们通过锁解决的是控制共享资源访问的问题,而分布式锁,就是解决了分布式系统中控制共享资源访问的问题。与单体应用不同的是,分布式系统中竞争共享资源的最小粒度从线程升级成了进程。

    2、分布式锁应该具备哪些条件:

    • 在分布式系统环境下,一个方法在同一时间只能被一个机器的一个线程执行
    • 高可用的获取锁与释放锁
    • 高性能的获取锁与释放锁
    • 具备可重入特性(可理解为重新进入,由多于一个任务并发使用,而不必担心数据错误)
    • 具备锁失效机制,即自动解锁,防止死锁
    • 具备非阻塞锁特性,即没有获取到锁将直接返回获取锁失败

    3、分布式锁的实现方式:

    基于数据库实现分布式锁基于Zookeeper实现分布式锁基于reids实现分布式锁

    这篇文章就简单介绍下这几种分布式锁的实现,重点讲解的是基于redis的分布式锁。

    二、基于数据库的分布式锁:

    基于数据库的锁实现也有两种方式,一是基于数据库表的增删,另一种是基于数据库排他锁。

    1、基于数据库表的增删:

    基于数据库表增删是最简单的方式,首先创建一张锁的表主要包含下列字段:类的全路径名+方法名,时间戳等字段。

    具体的使用方式:当需要锁住某个方法时,往该表中插入一条相关的记录。类的全路径名+方法名是有唯一性约束的,如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。执行完毕之后,需要delete该记录。

    (这里只是简单介绍一下,对于上述方案可以进行优化,如:应用主从数据库,数据之间双向同步;一旦挂掉快速切换到备库上;做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍;使用while循环,直到insert成功再返回成功;记录当前获得锁的机器的主机信息和线程信息,下次再获取锁的时候先查询数据库,如果当前机器的主机信息和线程信息在数据库可以查到的话,直接把锁分配给他就可以了,实现可重入锁)

    2、基于数据库排他锁:

    基于MySql的InnoDB引擎,可以使用以下方法来实现加锁操作:

    1. public void lock(){
    2. connection.setAutoCommit(false)
    3. int count = 0;
    4. while(count < 4){
    5. try{
    6. select * from lock where lock_name=xxx for update;
    7. if(结果不为空){
    8. //代表获取到锁
    9. return;
    10. }
    11. }catch(Exception e){
    12. }
    13. //为空或者抛异常的话都表示没有获取到锁
    14. sleep(1000);
    15. count++;
    16. }
    17. throw new LockException();
    18. }

    在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁。获得排它锁的线程即可获得分布式锁,当获得锁之后,可以执行方法的业务逻辑,执行完方法之后,释放锁connection.commit()。当某条记录被加上排他锁之后,其他线程无法获取排他锁并被阻塞。

    3、基于数据库锁的优缺点:

    上面两种方式都是依赖数据库表,一种是通过表中的记录判断当前是否有锁存在,另外一种是通过数据库的排他锁来实现分布式锁。

    • 优点是直接借助数据库,简单容易理解。
    • 缺点是操作数据库需要一定的开销,性能问题需要考虑。

    三、基于Zookeeper的分布式锁

    基于zookeeper临时有序节点可以实现的分布式锁。每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。 (第三方库有 Curator,Curator提供的InterProcessMutex是分布式锁的实现)

    Zookeeper实现的分布式锁存在两个个缺点:

    • (1)性能上可能并没有缓存服务那么高,因为每次在创建锁和释放锁的过程中,都要动态创建、销毁瞬时节点来实现锁功能。ZK中创建和删除节点只能通过Leader服务器来执行,然后将数据同步到所有的Follower机器上。
    • (2)zookeeper的并发安全问题:因为可能存在网络抖动,客户端和ZK集群的session连接断了,zk集群以为客户端挂了,就会删除临时节点,这时候其他客户端就可以获取到分布式锁了。

    四、基于redis的分布式锁:

    redis命令说明:

    (1)setnx命令:set if not exists,当且仅当 key 不存在时,将 key 的值设为 value。若给定的 key 已经存在,则 SETNX 不做任何动作。

    • 返回1,说明该进程获得锁,将 key 的值设为 value
    • 返回0,说明其他进程已经获得了锁,进程不能进入临界区。

    命令格式:setnx lock.key lock.value

    (2)get命令:获取key的值,如果存在,则返回;如果不存在,则返回nil

    命令格式:get lock.key

    (3)getset命令:该方法是原子的,对key设置newValue这个值,并且返回key原来的旧值。

    命令格式:getset lock.key newValue

    (4)del命令:删除redis中指定的key

    命令格式:del lock.key

    方案一:基于set命令的分布式锁

    1、加锁:使用setnx进行加锁,当该指令返回1时,说明成功获得锁

    2、解锁:当得到锁的线程执行完任务之后,使用del命令释放锁,以便其他线程可以继续执行setnx命令来获得锁

    (1)存在的问题:假设线程获取了锁之后,在执行任务的过程中挂掉,来不及显示地执行del命令释放锁,那么竞争该锁的线程都会执行不了,产生死锁的情况。

    (2)解决方案:设置锁超时时间

    3、设置锁超时时间:setnx 的 key 必须设置一个超时时间,以保证即使没有被显式释放,这把锁也要在一定时间后自动释放。可以使用expire命令设置锁超时时间

    (1)存在问题:

    setnx 和 expire 不是原子性的操作,假设某个线程执行setnx 命令,成功获得了锁,但是还没来得及执行expire 命令,服务器就挂掉了,这样一来,这把锁就没有设置过期时间了,变成了死锁,别的线程再也没有办法获得锁了。

    (2)解决方案:redis的set命令支持在获取锁的同时设置key的过期时间

    4、使用set命令加锁并设置锁过期时间:

    命令格式:set nx ex

    详情参考redis使用文档:

    http://doc.redisfans.com/string/set.html

    (1)存在问题:

    ① 假如线程A成功得到了锁,并且设置的超时时间是 30 秒。如果某些原因导致线程 A 执行的很慢,过了 30 秒都没执行完,这时候锁过期自动释放,线程 B 得到了锁。

    ② 随后,线程A执行完任务,接着执行del指令来释放锁。但这时候线程 B 还没执行完,线程A实际上删除的是线程B加的锁。

    (2)解决方案:

    可以在 del 释放锁之前做一个判断,验证当前的锁是不是自己加的锁。在加锁的时候把当前的线程 ID 当做value,并在删除之前验证 key 对应的 value 是不是自己线程的 ID。但是,这样做其实隐含了一个新的问题,get操作、判断和释放锁是两个独立操作,不是原子性。对于非原子性的问题,我们可以使用Lua脚本来确保操作的原子性

    5、锁续期:(这种机制类似于redisson的看门狗机制,文章后面会详细说明)

    虽然步骤4避免了线程A误删掉key的情况,但是同一时间有 A,B 两个线程在访问代码块,仍然是不完美的。怎么办呢?我们可以让获得锁的线程开启一个守护线程,用来给快要过期的锁“续期”。

    ① 假设线程A执行了29 秒后还没执行完,这时候守护线程会执行 expire 指令,为这把锁续期 20 秒。守护线程从第 29 秒开始执行,每 20 秒执行一次。

    ② 情况一:当线程A执行完任务,会显式关掉守护线程。

    ③ 情况二:如果服务器忽然断电,由于线程 A 和守护线程在同一个进程,守护线程也会停下。这把锁到了超时的时候,没人给它续命,也就自动释放了。

    方案二:基于setnx、get、getset的分布式锁

    1、实现原理:

    (1)setnx(lockkey, 当前时间+过期超时时间) ,如果返回1,则获取锁成功;如果返回0则没有获取到锁,转向步骤(2)

    (2)get(lockkey)获取值oldExpireTime ,并将这个value值与当前的系统时间进行比较,如果小于当前系统时间,则认为这个锁已经超时,可以允许别的请求重新获取,转向步骤(3)

    (3)计算新的过期时间 newExpireTime=当前时间+锁超时时间,然后getset(lockkey, newExpireTime) 会返回当前lockkey的值currentExpireTime

    (4)判断 currentExpireTime 与 oldExpireTime 是否相等,如果相等,说明当前getset设置成功,获取到了锁。如果不相等,说明这个锁又被别的请求获取走了,那么当前请求可以直接返回失败,或者继续重试。

    (5)在获取到锁之后,当前线程可以开始自己的业务处理,当处理完毕后,比较自己的处理时间和对于锁设置的超时时间,如果小于锁设置的超时时间,则直接执行del命令释放锁(释放锁之前需要判断持有锁的线程是不是当前线程);如果大于锁设置的超时时间,则不需要再锁进行处理。

    2、代码实现:

    (1)获取锁的实现方式:

    1. public boolean lock(long acquireTimeout, TimeUnit timeUnit) throws InterruptedException {
    2. acquireTimeout = timeUnit.toMillis(acquireTimeout);
    3. long acquireTime = acquireTimeout + System.currentTimeMillis();
    4. //使用J.U.C的ReentrantLock
    5. threadLock.tryLock(acquireTimeout, timeUnit);
    6. try {
    7. //循环尝试
    8. while (true) {
    9. //调用tryLock
    10. boolean hasLock = tryLock();
    11. if (hasLock) {
    12. //获取锁成功
    13. return true;
    14. } else if (acquireTime < System.currentTimeMillis()) {
    15. break;
    16. }
    17. Thread.sleep(sleepTime);
    18. }
    19. } finally {
    20. if (threadLock.isHeldByCurrentThread()) {
    21. threadLock.unlock();
    22. }
    23. }
    24. return false;
    25. }
    26. public boolean tryLock() {
    27. long currentTime = System.currentTimeMillis();
    28. String expires = String.valueOf(timeout + currentTime);
    29. //设置互斥量
    30. if (redisHelper.setNx(mutex, expires) > 0) {
    31. //获取锁,设置超时时间
    32. setLockStatus(expires);
    33. return true;
    34. } else {
    35. String currentLockTime = redisUtil.get(mutex);
    36. //检查锁是否超时
    37. if (Objects.nonNull(currentLockTime) && Long.parseLong(currentLockTime) < currentTime) {
    38. //获取旧的锁时间并设置互斥量
    39. String oldLockTime = redisHelper.getSet(mutex, expires);
    40. //旧值与当前时间比较
    41. if (Objects.nonNull(oldLockTime) && Objects.equals(oldLockTime, currentLockTime)) {
    42. //获取锁,设置超时时间
    43. setLockStatus(expires);
    44. return true;
    45. }
    46. }
    47. return false;
    48. }
    49. }

    tryLock方法中,主要逻辑如下:lock调用tryLock方法,参数为获取的超时时间与单位,线程在超时时间内,获取锁操作将自旋在那里,直到该自旋锁的保持者释放了锁。

    (2)释放锁的实现方式:

    1. public boolean unlock() {
    2. //只有锁的持有线程才能解锁
    3. if (lockHolder == Thread.currentThread()) {
    4. //判断锁是否超时,没有超时才将互斥量删除
    5. if (lockExpiresTime > System.currentTimeMillis()) {
    6. redisHelper.del(mutex);
    7. logger.info("删除互斥量[{}]", mutex);
    8. }
    9. lockHolder = null;
    10. logger.info("释放[{}]锁成功", mutex);
    11. return true;
    12. } else {
    13. throw new IllegalMonitorStateException("没有获取到锁的线程无法执行解锁操作");
    14. }
    15. }

    存在问题:

    (1)这个锁的核心是基于System.currentTimeMillis(),如果多台服务器时间不一致,那么问题就出现了,但是这个bug完全可以从服务器运维层面规避的,而且如果服务器时间不一样的话,只要和时间相关的逻辑都是会出问题的

    (2)如果前一个锁超时的时候,刚好有多台服务器去请求获取锁,那么就会出现同时执行redis.getset()而导致出现过期时间覆盖问题,不过这种情况并不会对正确结果造成影响

    (3)存在多个线程同时持有锁的情况:如果线程A执行任务的时间超过锁的过期时间,这时另一个线程就可以获得这个锁了,造成多个线程同时持有锁的情况。类似于方案一,可以使用“锁续期”的方式来解决。

    前两种redis分布式锁的存在的问题

    前面两种redis分布式锁的实现方式,如果从“高可用”的层面来看,仍然是有所欠缺,也就是说当 redis 是单点的情况下,当发生故障时,则整个业务的分布式锁都将无法使用。

    为了提高可用性,我们可以使用主从模式或者哨兵模式,但在这种情况下仍然存在问题,在主从模式或者哨兵模式下,正常情况下,如果加锁成功了,那么master节点会异步复制给对应的slave节点。但是如果在这个过程中发生master节点宕机,主备切换,slave节点从变为了 master节点,而锁还没从旧master节点同步过来,这就发生了锁丢失,会导致多个客户端可以同时持有同一把锁的问题。来看个图来想下这个过程:

    那么,如何避免这种情况呢?redis 官方给出了基于多个 redis 集群部署的高可用分布式锁解决方案:RedLock,在方案三我们就来详细介绍一下。(备注:如果master节点宕机期间,可以容忍多个客户端同时持有锁,那么就不需要redLock)

    方案三:基于RedLock的分布式锁

    redLock的官方文档地址:

    https://redis.io/topics/distlock

    Redlock算法是Redis的作者 Antirez 在单Redis节点基础上引入的高可用模式。Redlock的加锁要结合单节点分布式锁算法共同实现,因为​​​它是RedLock的基础

    1、加锁实现原理:

    现在假设有5个Redis主节点(大于3的奇数个),这样基本保证他们不会同时都宕掉,获取锁和释放锁的过程中,客户端会执行以下操作:

    (1)获取当前Unix时间,以毫秒为单位,并设置超时时间TTL

    TTL 要大于 正常业务执行的时间 + 获取所有redis服务消耗时间 + 时钟漂移

    (2)依次尝试从5个实例,使用相同的key和具有唯一性的value获取锁,当向Redis请求获取锁时,客户端应该设置一个网络连接和响应超时时间,这个超时时间应该小于锁的失效时间TTL,这样可以避免客户端死等。比如:TTL为5s,设置获取锁最多用1s,所以如果一秒内无法获取锁,就放弃获取这个锁,从而尝试获取下个锁

    (3)客户端 获取所有能获取的锁后的时间 减去 第(1)步的时间,就得到锁的获取时间。锁的获取时间要小于锁失效时间TTL,并且至少从半数以上的Redis节点取到锁,才算获取成功锁

    (4)如果成功获得锁,key的真正有效时间 = TTL - 锁的获取时间 - 时钟漂移。比如:TTL 是5s,获取所有锁用了2s,则真正锁有效时间为3s

    (5)如果因为某些原因,获取锁失败(没有在半数以上实例取到锁或者取锁时间已经超过了有效时间),客户端应该在所有的Redis实例上进行解锁,无论Redis实例是否加锁成功,因为可能服务端响应消息丢失了但是实际成功了。

    设想这样一种情况:客户端发给某个Redis节点的获取锁的请求成功到达了该Redis节点,这个节点也成功执行了SET操作,但是它返回给客户端的响应包却丢失了。这在客户端看来,获取锁的请求由于超时而失败了,但在Redis这边看来,加锁已经成功了。因此,释放锁的时候,客户端也应该对当时获取锁失败的那些Redis节点同样发起请求。实际上,这种情况在异步通信模型中是有可能发生的:客户端向服务器通信是正常的,但反方向却是有问题的。

    (6)失败重试:当client不能获取锁时,应该在随机时间后重试获取锁;同时重试获取锁要有一定次数限制;

    在随机时间后进行重试,主要是防止过多的客户端同时尝试去获取锁,导致彼此都获取锁失败的问题。

    算法示意图如下:

    2、RedLock性能及崩溃恢复的相关解决方法:

    由于N个Redis节点中的大多数能正常工作就能保证Redlock正常工作,因此理论上它的可用性更高。前面我们说的主从架构下存在的安全性问题,在RedLock中已经不存在了,但如果有节点发生崩溃重启,还是会对锁的安全性有影响的,具体的影响程度跟Redis持久化配置有关:

    (1)如果redis没有持久化功能,在clientA获取锁成功后,所有redis重启,clientB能够再次获取到锁,这样违法了锁的排他互斥性;

    (2)如果启动AOF永久化存储,事情会好些, 举例:当我们重启redis后,由于redis过期机制是按照unix时间戳走的,所以在重启后,然后会按照规定的时间过期,不影响业务;但是由于AOF同步到磁盘的方式默认是每秒一次,如果在一秒内断电,会导致数据丢失,立即重启会造成锁互斥性失效;但如果同步磁盘方式使用Always(每一个写命令都同步到硬盘)造成性能急剧下降;所以在锁完全有效性和性能方面要有所取舍;

    (3)为了有效解决既保证锁完全有效性 和 性能高效问题:antirez又提出了“延迟重启”的概念,redis同步到磁盘方式保持默认的每秒1次,在redis崩溃单机后(无论是一个还是所有),先不立即重启它,而是等待TTL时间后再重启,这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响,缺点是在TTL时间内服务相当于暂停状态;

    3、Redisson中RedLock的实现:

    在JAVA的redisson包已经实现了对RedLock的封装,主要是通过 redisClient 与 lua 脚本实现的,之所以使用 lua 脚本,是为了实现加解锁校验与执行的事务性。

    (1)唯一ID的生成:

    分布式事务锁中,为了能够让作为中心节点的存储节点获取锁的持有者,从而避免锁被非持有者误解锁,每个发起请求的 client 节点都必须具有全局唯一的 id。通常我们是使用 UUID 来作为这个唯一 id,redisson 也是这样实现的,在此基础上,redisson 还加入了 threadid 避免了多个线程反复获取 UUID 的性能损耗

    1. protected final UUID id = UUID.randomUUID();
    2. String getLockName(long threadId) {
    3. return id + ":" + threadId;
    4. }

    (2)加锁逻辑:

    redisson 加锁的核心代码非常容易理解,通过传入 TTL 与唯一 id,实现一段时间的加锁请求。下面是可重入锁的实现逻辑:

    1. <T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command)
    2. {
    3. internalLockLeaseTime = unit.toMillis(leaseTime);
    4. // 获取锁时向5个redis实例发送的命令
    5. return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
    6. // 校验分布式锁的KEY是否已存在,如果不存在,那么执行hset命令(hset REDLOCK_KEY uuid+threadId 1),并通过pexpire设置失效时间(也是锁的租约时间)
    7. "if (redis.call('exists', KEYS[1]) == 0) then " +
    8. "redis.call('hset', KEYS[1], ARGV[2], 1); " +
    9. "redis.call('pexpire', KEYS[1], ARGV[1]); " +
    10. "return nil; " +
    11. "end; " +
    12. // 如果分布式锁的KEY已存在,则校验唯一 id,如果唯一 id 匹配,表示是当前线程持有的锁,那么重入次数加1,并且设置失效时间
    13. "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
    14. "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
    15. "redis.call('pexpire', KEYS[1], ARGV[1]); " +
    16. "return nil; " +
    17. "end; " +
    18. // 获取分布式锁的KEY的失效时间毫秒数
    19. "return redis.call('pttl', KEYS[1]);",
    20. // KEYS[1] 对应分布式锁的 key;ARGV[1] 对应 TTL;ARGV[2] 对应唯一 id
    21. Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
    22. }

    (3)释放锁逻辑:

    1. protected RFuture<Boolean> unlockInnerAsync(long threadId)
    2. {
    3. //5个redis实例都执行如下命令
    4. return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
    5. // 如果分布式锁 KEY 不存在,那么向 channel 发布一条消息
    6. "if (redis.call('exists', KEYS[1]) == 0) then " +
    7. "redis.call('publish', KEYS[2], ARGV[1]); " +
    8. "return 1; " +
    9. "end;" +
    10. // 如果分布式锁存在,但是唯一 id 不匹配,表示锁已经被占用
    11. "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
    12. "return nil;" +
    13. "end; " +
    14. // 如果就是当前线程占有分布式锁,那么将重入次数减 1
    15. "local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
    16. // 重入次数减1后的值如果大于0,表示分布式锁有重入过,那么只设置失效时间,不删除
    17. "if (counter > 0) then " +
    18. "redis.call('pexpire', KEYS[1], ARGV[2]); " +
    19. "return 0; " +
    20. "else " +
    21. // 重入次数减1后的值如果为0,则删除锁,并发布解锁消息
    22. "redis.call('del', KEYS[1]); " +
    23. "redis.call('publish', KEYS[2], ARGV[1]); " +
    24. "return 1; "+
    25. "end; " +
    26. "return nil;",
    27. // KEYS[1] 表示锁的 key,KEYS[2] 表示 channel name,ARGV[1] 表示解锁消息,ARGV[2] 表示 TTL,ARGV[3] 表示唯一 id
    28. Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.unlockMessage, internalLockLeaseTime, getLockName(threadId));
    29. }

    (4)redisson中RedLock的使用:

    1. Config config = new Config();
    2. config.useSentinelServers()
    3. .addSentinelAddress("127.0.0.1:6369","127.0.0.1:6379", "127.0.0.1:6389")
    4. .setMasterName("masterName")
    5. .setPassword("password").setDatabase(0);
    6. RedissonClient redissonClient = Redisson.create(config);
    7. RLock redLock = redissonClient.getLock("REDLOCK_KEY");
    8. try {
    9. // 尝试加锁,最多等待500ms,上锁以后10s自动解锁
    10. boolean isLock = redLock.tryLock(500, 10000, TimeUnit.MILLISECONDS);
    11. if (isLock) {
    12. //获取锁成功,执行对应的业务逻辑
    13. }
    14. } catch (Exception e) {
    15. e.printStackTrace();
    16. } finally {
    17. redLock.unlock();
    18. }

    可以看到,redisson 包的实现中,通过 lua 脚本校验了解锁时的 client 身份,所以我们无需再在 finally 中去判断是否加锁成功,也无需做额外的身份校验,可以说已经达到开箱即用的程度了。

    同样,基于RedLock实现的分布式锁也存在 client 获取锁之后,在 TTL 时间内没有完成业务逻辑的处理,而此时锁会被自动释放,造成多个线程同时持有锁的问题。而Redisson 在实现的过程中,自然也考虑到了这一问题,redisson 提供了一个“看门狗”的特性,当锁即将过期还没有释放时,不断的延长锁key的生存时间。(具体实现原理会在方案四进行介绍)

    方案四:基于Redisson看门狗的分布式锁

    前面说了,如果某些原因导致持有锁的线程在锁过期时间内,还没执行完任务,而锁因为还没超时被自动释放了,那么就会导致多个线程同时持有锁的现象出现,而为了解决这个问题,可以进行“锁续期”。其实,在JAVA的Redisson包中有一个"看门狗"机制,已经帮我们实现了这个功能。

    1、redisson原理:

    redisson在获取锁之后,会维护一个看门狗线程,当锁即将过期还没有释放时,不断的延长锁key的生存时间

    2、加锁机制:

    线程去获取锁,获取成功:执行lua脚本,保存数据到redis数据库。

    线程去获取锁,获取失败:一直通过while循环尝试获取锁,获取成功后,执行lua脚本,保存数据到redis数据库。

    3、watch dog自动延期机制:

    看门狗启动后,对整体性能也会有一定影响,默认情况下看门狗线程是不启动的。如果使用redisson进行加锁的同时设置了锁的过期时间,也会导致看门狗机制失效。

    redisson在获取锁之后,会维护一个看门狗线程,在每一个锁设置的过期时间的1/3处,如果线程还没执行完任务,则不断延长锁的有效期。看门狗的检查锁超时时间默认是30秒,可以通过 lockWactchdogTimeout 参数来改变。

    加锁的时间默认是30秒,如果加锁的业务没有执行完,那么每隔 30 ÷ 3 = 10秒,就会进行一次续期,把锁重置成30秒,保证解锁前锁不会自动失效。

    那万一业务的机器宕机了呢?如果宕机了,那看门狗线程就执行不了了,就续不了期,那自然30秒之后锁就解开了呗。

    4、redisson分布式锁的关键点:

    a. 对key不设置过期时间,由Redisson在加锁成功后给维护一个watchdog看门狗,watchdog负责定时监听并处理,在锁没有被释放且快要过期的时候自动对锁进行续期,保证解锁前锁不会自动失效

    b. 通过Lua脚本实现了加锁和解锁的原子操作

    c. 通过记录获取锁的客户端id,每次加锁时判断是否是当前客户端已经获得锁,实现了可重入锁。

    5、Redisson的使用:

    在方案三中,我们已经演示了基于Redisson的RedLock的使用案例,其实 Redisson 也封装 可重入锁(Reentrant Lock)、公平锁(Fair Lock)、联锁(MultiLock)、红锁(RedLock)、读写锁(ReadWriteLock)、 信号量(Semaphore)、可过期性信号量(PermitExpirableSemaphore)、 闭锁(CountDownLatch)等,具体使用说明可以参考官方文档:Redisson的分布式锁和同步器

    附:redLock的官方文档翻译

  • 相关阅读:
    力扣每日一题35:搜索插入的位置
    redis常用命令
    文件操作(详解!)
    使用Nacos作为配置中心
    「MySQL高级篇」MySQL之MVCC实现原理&&事务隔离级别的实现
    Nautilus Chain 与 Coin98 生态达成合作,加速 Zebec 生态亚洲战略进程
    基于51单片机的自动售货机Proteus仿真
    【无标题】django中logging配置
    Linux下的系统编程——线程同步(十三)
    [C++] C++入门
  • 原文地址:https://blog.csdn.net/Java_zhujia/article/details/127802674