传统机器学习
Sklearn库、keras框架、pandas库、Numpy库、xgboost库、
tqdm进度条库、nltk词向量库、
一般常用库
#载入接下来分析用的库
- import pandas as pd
- import numpy as np
- import xgboost as xgb
- from tqdm import tqdm
- from sklearn.svm import SVC
- from keras.models import Sequential
- from keras.layers.recurrent import LSTM, GRU
- from keras.layers.core import Dense, Activation, Dropout
- from keras.layers.embeddings import Embedding
- from keras.layers.normalization import BatchNormalization
- from keras.utils import np_utils
- from sklearn import preprocessing, decomposition, * * model_selection, metrics, pipeline
- from sklearn.model_selection import GridSearchCV
- from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
- from sklearn.decomposition import TruncatedSVD
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import classification_report
- from sklearn.naive_bayes import MultinomialNB
- from keras.layers import GlobalMaxPooling1D, Conv1D, ** MaxPooling1D, Flatten, Bidirectional, SpatialDropout1D
- from keras.preprocessing import sequence, text
- from keras.callbacks import EarlyStopping
- from nltk import word_tokenize
全部将其搞定都行啦的回事与打算,
复现论文时候,在根据自己的使用情况,学习每一个库的相关API的详细使用情况,全部将其搞定都行啦的回事,而不是单单的将该函数给学透彻,全部将其研究彻底,各种API函数,将其全部都搞透彻,研究彻底都行啦的理由与打算。