• 【毕业设计】深度学习水果识别系统 - python CNN


    1 前言

    🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

    🔥 对毕设有任何疑问都可以问学长哦!

    这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

    为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

    🚩 基于深度学习的水果识别

    🥇学长这里给一个题目综合评分(每项满分5分)

    • 难度系数:4分
    • 工作量:4分
    • 创新点:3分

    🧿 选题指导, 项目分享:

    https://gitee.com/yaa-dc/BJH/blob/master/gg/cc/README.md

    2 开发简介

    深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解, 已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中, 以此来提高了水果图像的识别性能。

    3 识别原理

    3.1 传统图像识别原理

    传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

    在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、 遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

    在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

    在这里插入图片描述

    3.2 深度学习水果识别

    CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

    在这里插入图片描述

    学长本次采用的 CNN 架构如图:
    在这里插入图片描述

    4 数据集

    • 数据库分为训练集(train)和测试集(test)两部分

    • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

    • 图片类别可由图片名称中提取。

    训练集图片预览

    在这里插入图片描述

    测试集预览
    在这里插入图片描述

    数据集目录结构
    在这里插入图片描述

    5 部分关键代码

    5.1 处理训练集的数据结构

    import os
    import pandas as pd
    
    train_dir = './Training/'
    test_dir = './Test/'
    fruits = []
    fruits_image = []
    
    for i in os.listdir(train_dir):
        for image_filename in os.listdir(train_dir + i):
            fruits.append(i) # name of the fruit
            fruits_image.append(i + '/' + image_filename)
    train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
    train_fruits["Fruits Image"] = fruits_image
    
    print(train_fruits)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    5.2 模型网络结构

    import matplotlib.pyplot as plt
    import seaborn as sns
    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
    from glob import glob
    from keras.models import Sequential
    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
    img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
    plt.imshow(img)
    plt.axis("off")
    plt.show()
    
    array_image = img_to_array(img)
    
    # shape (100,100)
    print("Image Shape --> ", array_image.shape)
    
    # 131个类目
    fruitCountUnique = glob(train_dir + '/*' )
    numberOfClass = len(fruitCountUnique)
    print("How many different fruits are there --> ",numberOfClass)
    
    # 构建模型
    model = Sequential()
    model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(32,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(64,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    
    # 区分131类
    model.add(Dense(numberOfClass)) # output
    model.add(Activation("softmax"))
    model.compile(loss = "categorical_crossentropy",
    
                  optimizer = "rmsprop",
    
                  metrics = ["accuracy"])
    
    print("Target Size --> ", array_image.shape[:2])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    5.3 训练模型

    train_datagen = ImageDataGenerator(rescale= 1./255,
                                       shear_range = 0.3,
                                       horizontal_flip=True,
                                       zoom_range = 0.3)
    
    test_datagen = ImageDataGenerator(rescale= 1./255)
    epochs = 100
    batch_size = 32
    train_generator = train_datagen.flow_from_directory(
                    train_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    test_generator = test_datagen.flow_from_directory(
                    test_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    for data_batch, labels_batch in train_generator:
        print("data_batch shape --> ",data_batch.shape)
        print("labels_batch shape --> ",labels_batch.shape)
        break
    
    hist = model.fit_generator(
            generator = train_generator,
            steps_per_epoch = 1600 // batch_size,
            epochs=epochs,
            validation_data = test_generator,
            validation_steps = 800 // batch_size)
    
    #保存模型 model_fruits.h5
    model.save('model_fruits.h5')
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    顺便输出训练曲线

    #展示损失模型结果
    plt.figure()
    plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
    plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
    plt.title("Model Loss", color = "darkred", size = 13)
    plt.legend()
    plt.show()
    
    #展示精确模型结果
    plt.figure()
    plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
    plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
    plt.title("Model Accuracy", color = "darkred", size = 13)
    plt.legend()
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    在这里插入图片描述

    在这里插入图片描述

    6 识别效果

    from tensorflow.keras.models import load_model
    import os
    import pandas as pd
    
    from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
    import cv2,matplotlib.pyplot as plt,numpy as np
    from keras.preprocessing import image
    
    train_datagen = ImageDataGenerator(rescale= 1./255,
                                        shear_range = 0.3,
                                        horizontal_flip=True,
                                        zoom_range = 0.3)
    
    model = load_model('model_fruits.h5')
    batch_size = 32
    img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
    plt.imshow(img)
    plt.show()
    
    array_image = img_to_array(img)
    array_image = array_image * 1./255
    x = np.expand_dims(array_image, axis=0)
    images = np.vstack([x])
    classes = model.predict_classes(images, batch_size=10)
    print(classes)
    train_dir = './Training/'
    
    train_generator = train_datagen.flow_from_directory(
            train_dir,
            target_size= array_image.shape[:2],
            batch_size = batch_size,
            color_mode= "rgb",
            class_mode= "categorical”)
    print(train_generator.class_indices)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34

    在这里插入图片描述

    fig = plt.figure(figsize=(16, 16))
    axes = []
    files = []
    predictions = []
    true_labels = []
    rows = 5
    cols = 2
    
    # 随机选择几个图片
    def getRandomImage(path, img_width, img_height):
        """function loads a random image from a random folder in our test path"""
        folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
        random_directory = np.random.randint(0, len(folders))
        path_class = folders[random_directory]
        file_path = os.path.join(path, path_class)
        file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
        random_file_index = np.random.randint(0, len(file_names))
        image_name = file_names[random_file_index]
        final_path = os.path.join(file_path, image_name)
        return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class
    
    def draw_test(name, pred, im, true_label):
        BLACK = [0, 0, 0]
        expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
        cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
            0.85, (255, 0, 0), 2)
        cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
            0.85, (0, 255, 0), 2)
        return expanded_image
    IMG_ROWS, IMG_COLS = 100, 100
    
    # predicting images
    for i in range(0, 10):
        path = "./Test"
        img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
        files.append(final_path)
        true_labels.append(true_label)
        x = image.img_to_array(img)
        x = x * 1./255
        x = np.expand_dims(x, axis=0)
        images = np.vstack([x])
        classes = model.predict_classes(images, batch_size=10)
        predictions.append(classes)
    
    class_labels = train_generator.class_indices
    class_labels = {v: k for k, v in class_labels.items()}
    class_list = list(class_labels.values())
    
    for i in range(0, len(files)):
        image = cv2.imread(files[i])
        image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
        axes.append(fig.add_subplot(rows, cols, i+1))
        plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
        plt.grid(False)
        plt.axis('off')
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56

    在这里插入图片描述

    7 最后

  • 相关阅读:
    ORB-LSAM2:ComputeKeyPointsOctTree()提取特征:maxY = iniY + hCell + 6 为怎么是+6而不是+3?
    【NLP开发】Python实现聊天机器人(微软Azure机器人服务)
    vue3使用ref和reactive
    【Vue3+Tres 三维开发】02-Debug
    Stable Diffusion 系统教程 | 强大的ControlNet 控制网
    JavaSE学习----(八)常用类之String类
    注册亚马逊美国买家号需要些什么资料?
    Hadoop环境快速搭建(伪分布式和完全分布式步骤版)
    (王道考研计算机网络)第五章传输层-第三节1-5:TCP拥塞控制
    GeoServer(配合Tomcat)安装与配置
  • 原文地址:https://blog.csdn.net/caxiou/article/details/127785858