elastic-job:由当当网基于quartz 二次开发之后的分布式调度解决方案 , 由两个相对独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成 。
Saturn: 唯品会开源的一个分布式任务调度平台,可以全域统一配置,统一监控,任务高可用以及分片并发处
理。它是在elastic-job基础之上改良出来的。
xxl-job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学
习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
TBSchedule:淘宝的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多
互联网企业的流程调度系统中。
elastic-job 是由当当网基于quartz 二次开发之后的分布式调度解决方案 , 由两个相对独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成 。
elastic-job主要的设计理念是无中心化的分布式定时调度框架,思路来源于Quartz的基于数据库的高可用方案。但数据库没有分布式协调功能,所以在高可用方案的基础上增加了弹性扩容和数据分片的思路,以便于更大限度的利用分布式服务器的资源。
分布式调度协调
在分布式环境中,任务能够按指定的调度策略执行,并且能够避免同一任务多实例重复执行。
弹性扩容缩容
当集群中增加某一个实例,它应当也能够被选举并执行任务;当集群减少一个实例时,它所执行的任务能被转移到别的实例来执行。
作业类型
支持Simple、DataFlow、Script三种作业类型,后续会有详细介绍。
调度策略
基于成熟的定时任务作业框架Quartz cron表达式执行定时任务。
失效转移
某实例在任务执行失败后,会被转移到其他实例执行。
错过执行作业重触发
若因某种原因导致作业错过执行,自动记录错过执行的作业,并在上次作业完成后自动触发。
支持并行调度
支持任务分片,任务分片是指将一个任务分为多个小任务项在多个实例同时执行。
作业分片一致性
当任务被分片后,保证同一分片在分布式环境中仅一个执行实例。
任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。
支持作业生命周期操作
可以动态对任务进行开启及停止操作。
Spring 整合以及命名空间支持
对Spring支持良好的整合方式,支持spring自定义命名空间,支持占位符。
运维平台
提供运维界面,可以管理作业和注册中心。
1. 分片
任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。
例如:有一个遍历数据库某张表的作业,现有2台服务器。
为了快速的执行作业,那么每台服务器应执行作业的50%。 为满足此需求,可将作业分成2片,每台服务器执行1片。
作业遍历数据的逻辑可以为:服务器A遍历ID以奇数结尾的数据;服务器B遍历ID以偶数结尾的数据。
如果分成10片,则服务器A被分配到分片项0,1,2,3,4;服务器B被分配到分片项5,6,7,8,9。
作业遍历数据的逻辑可以为:服务器A遍历ID以0-4结尾的数据;服务器B遍历ID以5-9结尾的数据
2. 分片项与业务处理解耦
Elastic-Job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与真实数据的对应关系。以上面例子分成10片为例,框架只负责决定服务器分配到哪些分片项,由作业分配策略决定,但是每个分片处理哪一部分数据,比如第一个分片处理id以0-4结尾的数据,是由开发者去决定和处理的。
3. 中心化
xxl-job是中心化设计,在xxl-job中,所有定时任务的执行是在调度中心判断作业到了执行的时间,然后通知业务系统去执行,即是作业节点并不知道自己应该什么时候执行定时任务,只能通过调度中心去决定作业的执行。缺点是部署麻烦。
4. 去中心化
elastic-job是去中心化设计,作业调度中心节点,各个作业节点是自治的,作业框架的程序在到达相应时间点时各自触发调度,缺点是可能会存在各个作业服务器的时间不一致的问题。