(参考文献:Wi-Fi Can Do More: Toward Ubiquitous Wireless Sensing. IEEE Commun. Stand. Mag. 6(2)
: 42-49 (2022))
WiFi作为最大的基础网络架构,遍布于大大小小的家庭。传统WiFi主要应用于communication以及networking功能,而现在增加了一个新的属性sensing,并构建世界最大的"sensorless" sensing network。目前,最新修订IEEE 802.11bf协议正是为WiFi sensing建立标准,预期于2024年公布。并且不仅仅是WiFi,其他如UWB,毫米波,都在未来成为研究sensing方向重要的手段。
使用WiFi做sensing所面临的的三个挑战:
- Wi-Fi transceivers are not synchronized, and therefore the measured channel information contains significant phase distortions.
- Commercial Wi-Fi has limited channel bandwidths (20MHz–80MHz).
- Only a small number of antennas (e.g., typically one to three on IoT devices), producing poor spatial resolution to differentiate multipath signals arriving from different angles.
- How do we deploy Wi-Fi sensing solutions by integrating on top of commodity devices without affecting the primary networking functionality?
针对以上挑战的结论是:
- While there is a considerable number of multipaths in the complex indoor environments, the multipath resolvability of Wi-Fi signals is greatly and fundamentally constrained, making traditional two-ray reflection models and phased array signal processing techniques impractical for Wi-Fi sensing.
- Purely software-based solutions running on top of legacy Wi-Fi devices, which will then serve both networking and sensing concurrently, a true integrated communication and sensing solution.
基于以上作者不再采用原来的two-ray model,而是基于电磁波原理提出了一种新的方法,新方法利用尽可能所有多径并进行统计分析。采用了channel state information (CSI)+ auto-correlation function (ACF)来进行特征提取(往后的文章用了同样的方法)。具体可以实现以下功能:
- Motion. (参考论文 widetect)
- Periodicity (breathing rate). (参考论文 Smars) a predominantly periodic chest movement.
- Speed. (参考论文 wispeed 和 gaitway)
以下是几个APP和WEB端界面,Origin Tracking (the world’s first indoor tracking
technology with centimeter accuracy even underNLoS conditions)以及HEX