• 集成学习01_xgboost参数讲解与实战


    本章分以下几块来讲解

    一.xgboost 模型参数介绍

    二.xgboost 两种方式实现

    三. 网格搜索最优xgboost参数

    一.XGBoost的参数

    XGBoost的作者把所有的参数分成了三类,这里只介绍我们常用的一些参数,不常用的不做介绍

    通用参数:宏观函数控制。
    Booster参数:控制每一步的booster(tree/regression)。
    学习目标参数:控制训练目标的表现。

    1 通用参数

    1)booster[默认gbtree]

    • 选择每次迭代的模型,有两种选择:
      gbtree:基于树的模型
      gbliner:线性模型

    2)silent[默认0]

    • 当这个参数值为1时,静默模式开启,不会输出任何信息。
    • 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。

    3)nthread[默认值为最大可能的线程数]

    • 这个参数用来进行多线程控制,应当输入系统的核数。
    • 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。

    4)num_feature [set automatically by xgboost, no need to be set by user]

    • boosting过程中用到的特征维数,设置为特征个数。
    • XGBoost会自动设置,不需要手工设置。

    2 booster参数

    尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。

    1)eta[默认0.3]

    • 和GBM中的 learning rate 参数类似。
    • 通过减少每一步的权重,可以提高模型的鲁棒性。
    • 典型值为0.01-0.2。

    2)min_child_weight[默认1]

    *决定最小叶子节点样本权重和。

    • 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。
    • 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
    • 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。

    3)max_depth[默认6]

    • 和GBM中的参数相同,这个值为树的最大深度。
    • 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
    • 需要使用CV函数来进行调优。
    • 典型值:3-10

    4)max_leaf_nodes

    • 树上最大的节点或叶子的数量。
    • 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成
    • 如果定义了这个参数,GBM会忽略max_depth参数。

    5)gamma[默认0]

    • 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。
    • Gamma指定了节点分裂所需的最小损失函数下降值。这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
    • 模型在默认情况下,对于一个节点的划分只有在其loss function 得到结果大于0的情况下才进行,而gamma 给定了所需的最低loss function的值
    • gamma值使得算法更conservation,且其值依赖于loss function ,在模型中应该进行调参.

    6)max_delta_step[默认0]

    • 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
    • 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
    • 这个参数一般用不到,但是你可以挖掘出来它更多的用处。

    7)subsample[默认1]

    • 和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
    • 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
    • 典型值:0.5-1

    8)colsample_bytree[默认1]

    • 和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
    • 典型值:0.5-1

    9)colsample_bylevel[默认1]

    • 用来控制树的每一级的每一次分裂,对列数的采样的占比。
    • 一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。

    10)lambda[默认1]

    • 权重的L2正则化项。(和Ridge regression类似)。
    • 这个参数是用来控制XGBoost的正则化部分的。

    11)alpha[默认1]

    • 权重的L1正则化项。(和Lasso regression类似)。
    • 可以应用在很高维度的情况下,使得算法的速度更快。

    12)scale_pos_weight[默认1]

    • 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
    • 大于0的取值可以处理类别不平衡的情况。帮助模型更快收敛。

    13) Parameter for Linear Booster

    lambda_bias

    • 在偏置上的L2正则。缺省值为0(在L1上没有偏置项的正则,因为L1时偏置不重要)

    3 学习目标参数

    这个参数用来控制理想的优化目标和每一步结果的度量方法。

    1)objective[默认reg:linear]

    • 这个参数定义需要被最小化的损失函数。最常用的值有: 定义学习任务及相应的学习目标,可选的目标函数如下:
    • “reg:linear” –线性回归。
    • “reg:logistic” –逻辑回归。
    • “binary:logistic” –二分类的逻辑回归问题,输出为概率。
    • “binary:logitraw” –二分类的逻辑回归问题,输出的结果为wTx。
    • “count:poisson” –计数问题的poisson回归,输出结果为poisson分布。
    • 在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
    • “multi:softmax” –让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)
    • “multi:softprob” –和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。每行数据表示样本所属于每个类别的概率。
    • “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss

    2)eval_metric[默认值取决于objective参数的取值]

    • 对于有效数据的度量方法。
    • 对于回归问题,默认值是rmse,对于分类问题,默认值是error。
    • 典型值有:
    • rmse 均方根误差
    • mae 平均绝对误差
    • logloss 负对数似然函数值
    • error 二分类错误率(阈值为0.5)
    • merror 多分类错误率
    • mlogloss 多分类logloss损失函数
    • auc 曲线下面积

    3)seed(默认0)

    • 随机数的种子
    • 设置它可以复现随机数据的结果,也可以用于调整参数
    • 如果你比较习惯scikit-learn的参数形式,那么XGBoost的Python 版本也提供了sklearn形式的接口 XGBClassifier。

    4)sklearn 参数对照

    它使用sklearn形式的参数命名方式,对应关系如下:

    • 1、eta -> learning_rate
    • 2、lambda -> reg_lambda
    • 3、alpha -> reg_alpha

    4.平台控制参数 Console Parameters

    The following parameters are only used in the console version of xgboost

    • use_buffer [ default=1 ]
      是否为输入创建二进制的缓存文件,缓存文件可以加速计算。缺省值为1
    • num_round
      boosting迭代计算次数。
    • data
      输入数据的路径
    • test:data
      测试数据的路径
    • save_period [default=0]
      表示保存第i*save_period次迭代的模型。例如save_period=10表示每隔10迭代计算XGBoost将会保存中间结果,设置为0表示每次计算的模型都要保持。
    • task [default=train] options: train, pred, eval, dump
      train:训练模型
      pred:对测试数据进行预测
      eval:通过eval[name]=filenam定义评价指标
      dump:将学习模型保存成文本格式
    • model_in [default=NULL]
      指向模型的路径在test, eval, dump都会用到,如果在training中定义XGBoost将会接着输入模型继续训练
    • model_out [default=NULL]
      训练完成后模型的保存路径,如果没有定义则会输出类似0003.model这样的结果,0003是第三次训练的模型结果。
    • model_dir [default=models]
      输出模型所保存的路径。
    • fmap
      feature map, used for dump model
    • name_dump [default=dump.txt]
      name of model dump file
    • name_pred [default=pred.txt]
      预测结果文件
    • pred_margin [default=0]
      输出预测的边界,而不是转换后的概率

    二.xgboost 实现

    本章以优惠券推荐数据为例对xgboost结合skleran与直接采用xgboost进行实现

    1.导入相关包

    
    import pandas as pd, numpy as np
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn import metrics
    import catboost as cb
    import xgboost as xgb
    from xgboost.sklearn import XGBClassifier
    import os
    import joblib
    from sklearn.preprocessing import LabelEncoder
    from collections import defaultdict
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    data=pd.read_excel('car_coupon.xlsx')
    data.head(5)
    
    • 1
    • 2
    IDdestinationpassangertoCoupon_GEQ15mintoCoupon_GEQ25mindirection_samedirection_oppgenderagemaritalStatus...BarCoffeeHouseCarryAwayRestaurantLessThan20Restaurant20To50weathertimecouponexpirationY
    011263No Urgent PlaceFriend(s)0001Male55Widowed...00111Sunny14Coffee House241
    120136WorkAlone1010Female26Married partner...00333Sunny7Bar240
    214763WorkAlone1001Female55Single...00111Sunny7Coffee House240
    312612No Urgent PlaceKid(s)1001Female41Married partner...03333Sunny10Carry out & Take away20
    417850No Urgent PlacePartner1001Female31Married partner...11101010Snowy14Coffee House20

    5 rows × 23 columns

    2.数据处理

      1. 对类别数据进行编码
    d = defaultdict(LabelEncoder)
    data[['destination', 'passanger','gender','maritalStatus','education', 'occupation', \
        'weather','coupon' ]]=data[['destination', 'passanger','gender','maritalStatus','education', 'occupation', \
            'weather','coupon' ]].apply(lambda x: d[x.name].fit_transform(x))
    data.head(5)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    IDdestinationpassangertoCoupon_GEQ15mintoCoupon_GEQ25mindirection_samedirection_oppgenderagemaritalStatus...BarCoffeeHouseCarryAwayRestaurantLessThan20Restaurant20To50weathertimecouponexpirationY
    0112631100011554...001112142241
    1201362010100261...00333270240
    2147632010010552...00111272240
    3126121210010411...03333210120
    4178501310010311...11101010114220

    5 rows × 23 columns

    • 切分训练集与测试集
    train, test, y_train, y_test = train_test_split(data.drop(["Y"], axis=1), data["Y"],
                                                    random_state=10, test_size=0.3)  
    
    • 1
    • 2
    • 注意下 data ,train, test, y_train, y_test的数据格式
    print(type(data))
    print(type(train))
    print(type( test))
    print(type(y_train))
    print(type(y_test))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    
    
    
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 撰写评价函数
    def model_eval2(m, train, test):
        print('train_roc_auc_score:',metrics.roc_auc_score(y_train, m.predict_proba(train)[:, 1]))
        print('test_roc_auc_score:',metrics.roc_auc_score(y_test, m.predict_proba(test)[:, 1]))
        print('train_accuracy_score:',metrics.accuracy_score(y_train,  m.predict(train)))
        print('test_accuracy_score:',metrics.accuracy_score(y_test, m.predict(test)))
        print('train_precision_score:',metrics.precision_score(y_train, m.predict(train)))
        print('test__precision_score:',metrics.precision_score(y_test, m.predict(test)))
        print('train_recall_score:',metrics.recall_score(y_train, m.predict(train)))
        print('test_recall_score:',metrics.recall_score(y_test, m.predict(test)))
        print('train_f1_score:',metrics.f1_score(y_train, m.predict(train)))
        print('test_f1_score:',metrics.f1_score(y_test, m.predict(test)))  
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    3.结合sklearn的xgboot模型

    step01-拟合模型

    from xgboost.sklearn import XGBClassifier
    xgboost_model = XGBClassifier()
    eval_set = [(test.values,  y_test.values)]
    #拟合模型
    xgboost_model.fit(train.values, 
                      y_train.values, 
                      early_stopping_rounds=300, 
                      eval_metric="logloss",  # 损失函数的类型,分类一般都是用对数作为损失函数
                      eval_set=eval_set,
                      verbose=False)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    D:\dprograme\Anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.
      warnings.warn(
    D:\dprograme\Anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.
      warnings.warn(
    
    • 1
    • 2
    • 3
    • 4
    XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
    
              colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
              early_stopping_rounds=None, enable_categorical=False,
              eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
              importance_type=None, interaction_constraints='',
              learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,
              max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,
              missing=nan, monotone_constraints='()', n_estimators=100,
              n_jobs=0, num_parallel_tree=1, predictor='auto', random_state=0,
              reg_alpha=0, reg_lambda=1, ...)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    step02-评价模型

    model_eval2(xgboost_model, train.values, test.values)
    
    • 1
    train_roc_auc_score: 0.890295988831706
    test_roc_auc_score: 0.7178983466569767
    train_accuracy_score: 0.8007142857142857
    test_accuracy_score: 0.6683333333333333
    train_precision_score: 0.7965116279069767
    test__precision_score: 0.704225352112676
    train_recall_score: 0.8681875792141952
    test_recall_score: 0.7267441860465116
    train_f1_score: 0.8308065494238933
    test_f1_score: 0.7153075822603719
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    step03-利用模型预测

    • xgboost_model.predict 预测结果是0或1的int型
    • xgboost_model.predict_proba预测结果是0到1之间的float型
    y_test_pred = xgboost_model.predict( test.values )
    y_trian_prod = xgboost_model.predict_proba( train.values )
    
    • 1
    • 2

    step04-保存和调用模型

    joblib.dump(xgboost_model , r'D:\Ensemble_Learning\xgboostinfo\xgboostsklearnsingle.model')
    load_model=joblib.load(r'D:\Ensemble_Learning\xgboostinfo\xgboostsklearnsingle.model')
    load_model.predict( test.values )
    
    • 1
    • 2
    • 3
    array([0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1,
           1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1,
           1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,
           1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
           0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
           0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
           1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,
           0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0,
           1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
           1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,
           1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
           1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
           1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
           1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
           0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,
           1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
           1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
           1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
           0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,
           1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,
           1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1,
           0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
           1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,
           1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,
           1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
           0, 1, 1, 0, 1, 0])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    注意点

    • 上面xgboost_model.fit传入的是train.values和y_train.values,数据类型为numpy.ndarray
    • 上面* xgboost_model.predict与xgboost_model.predict_proba传入的数据类型为numpy.ndarray
    print(type(data.values))
    print(type(train.values))
    print(type( test.values))
    print(type(y_train.values))
    print(type(y_test.values))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    
    
    
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5

    4.直接采用xgboost的模型

    step-01 构建参数

    params={'alpha': 0.09,
     'booster': 'gbtree',
     'colsample_bylevel': 0.4,
     'colsample_bytree': 0.7,
     'eval_metric': 'logloss',
     'gamma': 0.85,
     'learning_rate': 0.1,
     'max_depth': 7,
     'min_child_weight': 20,
     'n_estimator': 40,
     'objective': 'binary:logistic',
     'reg_lambda': 0.1,
     'seed': 1,
     'subsample': 0.6}
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    step-02 处理数据

    dtrain = xgb.DMatrix(train, label=y_train,feature_names=list(train.columns))
    dtest = xgb.DMatrix(test)
    validation = xgb.DMatrix(test,y_test)
    watchlist = [(validation,'train')]
    
    • 1
    • 2
    • 3
    • 4

    step-03 拟合模型

    model = xgb.train(params,
                      dtrain,
                      num_boost_round= 2000, # 迭代的次数,及弱学习器的个数
                      evals= watchlist)
    
    • 1
    • 2
    • 3
    • 4
    [21:06:30] WARNING: C:/Users/administrator/workspace/xgboost-win64_release_1.6.0/src/learner.cc:627: 
    Parameters: { "n_estimator" } might not be used.
    
      This could be a false alarm, with some parameters getting used by language bindings but
      then being mistakenly passed down to XGBoost core, or some parameter actually being used
      but getting flagged wrongly here. Please open an issue if you find any such cases.
    
    
    [0]	train-logloss:0.68835
    [1]	train-logloss:0.68565
    [2]	train-logloss:0.68298
    [3]	train-logloss:0.67752
    [4]	train-logloss:0.67465
    [5]	train-logloss:0.67235
    [6]	train-logloss:0.66660
    [7]	train-logloss:0.66280
    [8]	train-logloss:0.66026
    [9]	train-logloss:0.65894
    [10]	train-logloss:0.65901
    [11]	train-logloss:0.65892
    [12]	train-logloss:0.65751
    [13]	train-logloss:0.65512
    [14]	train-logloss:0.65389
    [15]	train-logloss:0.65229
    [16]	train-logloss:0.64792
    [17]	train-logloss:0.64436
    [18]	train-logloss:0.64343
    [19]	train-logloss:0.64374
    [20]	train-logloss:0.64223
    [21]	train-logloss:0.63890
    [22]	train-logloss:0.63934
    [23]	train-logloss:0.63531
    [24]	train-logloss:0.63163
    [25]	train-logloss:0.63014
    [26]	train-logloss:0.62985
    [27]	train-logloss:0.62939
    [28]	train-logloss:0.62872
    [29]	train-logloss:0.62832
    [30]	train-logloss:0.62718
    [31]	train-logloss:0.62531
    [32]	train-logloss:0.62274
    [33]	train-logloss:0.62034
    [34]	train-logloss:0.61853
    [35]	train-logloss:0.61825
    [36]	train-logloss:0.61698
    [37]	train-logloss:0.61518
    [38]	train-logloss:0.61462
    [39]	train-logloss:0.61375
    [40]	train-logloss:0.61137
    [41]	train-logloss:0.61013
    [42]	train-logloss:0.61013
    [43]	train-logloss:0.61091
    [44]	train-logloss:0.60978
    [45]	train-logloss:0.60987
    [46]	train-logloss:0.60909
    [47]	train-logloss:0.60926
    [48]	train-logloss:0.60889
    [49]	train-logloss:0.60833
    [50]	train-logloss:0.60849
    [51]	train-logloss:0.60889
    [52]	train-logloss:0.60871
    [53]	train-logloss:0.60861
    [54]	train-logloss:0.60935
    [55]	train-logloss:0.60868
    [56]	train-logloss:0.60836
    [57]	train-logloss:0.60862
    [58]	train-logloss:0.60933
    [59]	train-logloss:0.60926
    [60]	train-logloss:0.60929
    [61]	train-logloss:0.60936
    [62]	train-logloss:0.60876
    [63]	train-logloss:0.60862
    [64]	train-logloss:0.60866
    [65]	train-logloss:0.60921
    [66]	train-logloss:0.60946
    [67]	train-logloss:0.60896
    [68]	train-logloss:0.60919
    [69]	train-logloss:0.60852
    [70]	train-logloss:0.60873
    [71]	train-logloss:0.60902
    [72]	train-logloss:0.60903
    [73]	train-logloss:0.60881
    [74]	train-logloss:0.60862
    [75]	train-logloss:0.60658
    [76]	train-logloss:0.60641
    [77]	train-logloss:0.60657
    [78]	train-logloss:0.60661
    [79]	train-logloss:0.60736
    [80]	train-logloss:0.60740
    [81]	train-logloss:0.60726
    [82]	train-logloss:0.60717
    [83]	train-logloss:0.60745
    [84]	train-logloss:0.60663
    [85]	train-logloss:0.60681
    [86]	train-logloss:0.60718
    [87]	train-logloss:0.60616
    [88]	train-logloss:0.60682
    [89]	train-logloss:0.60632
    [90]	train-logloss:0.60609
    [91]	train-logloss:0.60548
    [92]	train-logloss:0.60544
    [93]	train-logloss:0.60522
    [94]	train-logloss:0.60536
    [95]	train-logloss:0.60596
    [96]	train-logloss:0.60680
    [97]	train-logloss:0.60665
    [98]	train-logloss:0.60742
    [99]	train-logloss:0.60716
    [100]	train-logloss:0.60704
    [101]	train-logloss:0.60628
    [102]	train-logloss:0.60648
    [103]	train-logloss:0.60658
    [104]	train-logloss:0.60748
    [105]	train-logloss:0.60746
    [106]	train-logloss:0.60750
    [107]	train-logloss:0.60736
    [108]	train-logloss:0.60640
    [109]	train-logloss:0.60703
    [110]	train-logloss:0.60651
    [111]	train-logloss:0.60647
    [112]	train-logloss:0.60556
    [113]	train-logloss:0.60544
    [114]	train-logloss:0.60372
    [115]	train-logloss:0.60246
    [116]	train-logloss:0.60285
    [117]	train-logloss:0.60266
    [118]	train-logloss:0.60286
    [119]	train-logloss:0.60331
    [120]	train-logloss:0.60429
    [121]	train-logloss:0.60428
    [122]	train-logloss:0.60386
    [123]	train-logloss:0.60349
    [124]	train-logloss:0.60357
    [125]	train-logloss:0.60228
    [126]	train-logloss:0.60228
    [127]	train-logloss:0.60304
    [128]	train-logloss:0.60288
    [129]	train-logloss:0.60234
    [130]	train-logloss:0.60196
    [131]	train-logloss:0.60220
    [132]	train-logloss:0.60163
    [133]	train-logloss:0.60118
    [134]	train-logloss:0.60188
    [135]	train-logloss:0.60089
    [136]	train-logloss:0.60052
    [137]	train-logloss:0.60121
    [138]	train-logloss:0.60029
    [139]	train-logloss:0.59980
    [140]	train-logloss:0.60066
    [141]	train-logloss:0.60037
    [142]	train-logloss:0.60084
    [143]	train-logloss:0.60068
    [144]	train-logloss:0.60141
    [145]	train-logloss:0.60053
    [146]	train-logloss:0.60028
    [147]	train-logloss:0.60044
    [148]	train-logloss:0.59957
    [149]	train-logloss:0.60004
    [150]	train-logloss:0.59962
    [151]	train-logloss:0.59961
    [152]	train-logloss:0.59938
    [153]	train-logloss:0.59880
    [154]	train-logloss:0.59873
    [155]	train-logloss:0.59878
    [156]	train-logloss:0.59905
    [157]	train-logloss:0.59885
    [158]	train-logloss:0.59913
    [159]	train-logloss:0.59885
    [160]	train-logloss:0.59845
    [161]	train-logloss:0.59908
    [162]	train-logloss:0.59909
    [163]	train-logloss:0.59804
    [164]	train-logloss:0.59788
    [165]	train-logloss:0.59796
    [166]	train-logloss:0.59915
    [167]	train-logloss:0.59874
    [168]	train-logloss:0.59868
    [169]	train-logloss:0.59866
    [170]	train-logloss:0.59915
    [171]	train-logloss:0.59945
    [172]	train-logloss:0.59978
    [173]	train-logloss:0.59945
    [174]	train-logloss:0.59956
    [175]	train-logloss:0.59835
    [176]	train-logloss:0.59840
    [177]	train-logloss:0.59836
    [178]	train-logloss:0.59825
    [179]	train-logloss:0.59791
    [180]	train-logloss:0.59836
    [181]	train-logloss:0.59813
    [182]	train-logloss:0.59832
    [183]	train-logloss:0.59790
    [184]	train-logloss:0.59847
    [185]	train-logloss:0.59873
    [186]	train-logloss:0.59886
    [187]	train-logloss:0.59942
    [188]	train-logloss:0.59865
    [189]	train-logloss:0.59852
    [190]	train-logloss:0.59852
    [191]	train-logloss:0.59848
    [192]	train-logloss:0.59884
    [193]	train-logloss:0.59845
    [194]	train-logloss:0.59827
    [195]	train-logloss:0.59773
    [196]	train-logloss:0.59742
    [197]	train-logloss:0.59782
    [198]	train-logloss:0.59742
    [199]	train-logloss:0.59765
    [200]	train-logloss:0.59699
    [201]	train-logloss:0.59748
    [202]	train-logloss:0.59788
    [203]	train-logloss:0.59799
    [204]	train-logloss:0.59756
    [205]	train-logloss:0.59685
    [206]	train-logloss:0.59746
    [207]	train-logloss:0.59756
    [208]	train-logloss:0.59718
    [209]	train-logloss:0.59742
    [210]	train-logloss:0.59784
    [211]	train-logloss:0.59826
    [212]	train-logloss:0.59800
    [213]	train-logloss:0.59736
    [214]	train-logloss:0.59694
    [215]	train-logloss:0.59707
    [216]	train-logloss:0.59706
    [217]	train-logloss:0.59695
    [218]	train-logloss:0.59711
    [219]	train-logloss:0.59697
    [220]	train-logloss:0.59773
    [221]	train-logloss:0.59839
    [222]	train-logloss:0.59860
    [223]	train-logloss:0.59783
    [224]	train-logloss:0.59776
    [225]	train-logloss:0.59783
    [226]	train-logloss:0.59780
    [227]	train-logloss:0.59815
    [228]	train-logloss:0.59765
    [229]	train-logloss:0.59831
    [230]	train-logloss:0.59830
    [231]	train-logloss:0.59818
    [232]	train-logloss:0.59829
    [233]	train-logloss:0.59806
    [234]	train-logloss:0.59734
    [235]	train-logloss:0.59763
    [236]	train-logloss:0.59748
    [237]	train-logloss:0.59630
    [238]	train-logloss:0.59615
    [239]	train-logloss:0.59571
    [240]	train-logloss:0.59605
    [241]	train-logloss:0.59521
    [242]	train-logloss:0.59485
    [243]	train-logloss:0.59427
    [244]	train-logloss:0.59476
    [245]	train-logloss:0.59555
    [246]	train-logloss:0.59568
    [247]	train-logloss:0.59555
    [248]	train-logloss:0.59653
    [249]	train-logloss:0.59710
    [250]	train-logloss:0.59722
    [251]	train-logloss:0.59678
    [252]	train-logloss:0.59689
    [253]	train-logloss:0.59721
    [254]	train-logloss:0.59773
    [255]	train-logloss:0.59789
    [256]	train-logloss:0.59814
    [257]	train-logloss:0.59722
    [258]	train-logloss:0.59697
    [259]	train-logloss:0.59736
    [260]	train-logloss:0.59678
    [261]	train-logloss:0.59661
    [262]	train-logloss:0.59701
    [263]	train-logloss:0.59634
    [264]	train-logloss:0.59628
    [265]	train-logloss:0.59599
    [266]	train-logloss:0.59570
    [267]	train-logloss:0.59623
    [268]	train-logloss:0.59656
    [269]	train-logloss:0.59578
    [270]	train-logloss:0.59617
    [271]	train-logloss:0.59549
    [272]	train-logloss:0.59521
    [273]	train-logloss:0.59510
    [274]	train-logloss:0.59484
    [275]	train-logloss:0.59461
    [276]	train-logloss:0.59496
    [277]	train-logloss:0.59509
    [278]	train-logloss:0.59511
    [279]	train-logloss:0.59475
    [280]	train-logloss:0.59425
    [281]	train-logloss:0.59337
    [282]	train-logloss:0.59408
    [283]	train-logloss:0.59440
    [284]	train-logloss:0.59461
    [285]	train-logloss:0.59478
    [286]	train-logloss:0.59540
    [287]	train-logloss:0.59601
    [288]	train-logloss:0.59565
    [289]	train-logloss:0.59641
    [290]	train-logloss:0.59619
    [291]	train-logloss:0.59652
    [292]	train-logloss:0.59666
    [293]	train-logloss:0.59647
    [294]	train-logloss:0.59690
    [295]	train-logloss:0.59681
    [296]	train-logloss:0.59674
    [297]	train-logloss:0.59613
    [298]	train-logloss:0.59633
    [299]	train-logloss:0.59615
    [300]	train-logloss:0.59657
    [301]	train-logloss:0.59685
    [302]	train-logloss:0.59679
    [303]	train-logloss:0.59676
    [304]	train-logloss:0.59651
    [305]	train-logloss:0.59599
    [306]	train-logloss:0.59591
    [307]	train-logloss:0.59589
    [308]	train-logloss:0.59606
    [309]	train-logloss:0.59680
    [310]	train-logloss:0.59755
    [311]	train-logloss:0.59776
    [312]	train-logloss:0.59839
    [313]	train-logloss:0.59982
    [314]	train-logloss:0.60061
    [315]	train-logloss:0.60068
    [316]	train-logloss:0.60074
    [317]	train-logloss:0.60003
    [318]	train-logloss:0.59996
    [319]	train-logloss:0.59952
    [320]	train-logloss:0.59922
    [321]	train-logloss:0.59896
    [322]	train-logloss:0.59843
    [323]	train-logloss:0.59792
    [324]	train-logloss:0.59771
    [325]	train-logloss:0.59799
    [326]	train-logloss:0.59850
    [327]	train-logloss:0.59840
    [328]	train-logloss:0.59858
    [329]	train-logloss:0.59830
    [330]	train-logloss:0.59859
    [331]	train-logloss:0.59892
    [332]	train-logloss:0.59962
    [333]	train-logloss:0.59948
    [334]	train-logloss:0.59957
    [335]	train-logloss:0.59921
    [336]	train-logloss:0.59992
    [337]	train-logloss:0.60011
    [338]	train-logloss:0.60025
    [339]	train-logloss:0.60013
    [340]	train-logloss:0.59981
    [341]	train-logloss:0.59978
    [342]	train-logloss:0.59933
    [343]	train-logloss:0.59936
    [344]	train-logloss:0.59835
    [345]	train-logloss:0.59806
    [346]	train-logloss:0.59652
    [347]	train-logloss:0.59686
    [348]	train-logloss:0.59685
    [349]	train-logloss:0.59660
    [350]	train-logloss:0.59550
    [351]	train-logloss:0.59544
    [352]	train-logloss:0.59591
    [353]	train-logloss:0.59621
    [354]	train-logloss:0.59615
    [355]	train-logloss:0.59651
    [356]	train-logloss:0.59627
    [357]	train-logloss:0.59743
    [358]	train-logloss:0.59777
    [359]	train-logloss:0.59810
    [360]	train-logloss:0.59777
    [361]	train-logloss:0.59743
    [362]	train-logloss:0.59659
    [363]	train-logloss:0.59644
    [364]	train-logloss:0.59640
    [365]	train-logloss:0.59634
    [366]	train-logloss:0.59636
    [367]	train-logloss:0.59684
    [368]	train-logloss:0.59731
    [369]	train-logloss:0.59742
    [370]	train-logloss:0.59739
    [371]	train-logloss:0.59784
    [372]	train-logloss:0.59729
    [373]	train-logloss:0.59773
    [374]	train-logloss:0.59768
    [375]	train-logloss:0.59806
    [376]	train-logloss:0.59811
    [377]	train-logloss:0.59777
    [378]	train-logloss:0.59874
    [379]	train-logloss:0.59870
    [380]	train-logloss:0.59868
    [381]	train-logloss:0.59937
    [382]	train-logloss:0.59917
    [383]	train-logloss:0.59956
    [384]	train-logloss:0.59952
    [385]	train-logloss:0.59952
    [386]	train-logloss:0.59907
    [387]	train-logloss:0.59934
    [388]	train-logloss:0.59920
    [389]	train-logloss:0.59938
    [390]	train-logloss:0.59972
    [391]	train-logloss:0.59959
    [392]	train-logloss:0.59966
    [393]	train-logloss:0.59993
    [394]	train-logloss:0.59983
    [395]	train-logloss:0.60023
    [396]	train-logloss:0.60025
    [397]	train-logloss:0.60012
    [398]	train-logloss:0.59959
    [399]	train-logloss:0.59971
    [400]	train-logloss:0.59964
    [401]	train-logloss:0.59952
    [402]	train-logloss:0.59944
    [403]	train-logloss:0.59939
    [404]	train-logloss:0.59934
    [405]	train-logloss:0.59978
    [406]	train-logloss:0.59954
    [407]	train-logloss:0.59956
    [408]	train-logloss:0.59985
    [409]	train-logloss:0.59924
    [410]	train-logloss:0.59999
    [411]	train-logloss:0.60040
    [412]	train-logloss:0.60098
    [413]	train-logloss:0.60030
    [414]	train-logloss:0.60028
    [415]	train-logloss:0.59985
    [416]	train-logloss:0.60055
    [417]	train-logloss:0.60067
    [418]	train-logloss:0.60093
    [419]	train-logloss:0.60046
    [420]	train-logloss:0.60099
    [421]	train-logloss:0.60128
    [422]	train-logloss:0.60063
    [423]	train-logloss:0.60044
    [424]	train-logloss:0.60062
    [425]	train-logloss:0.60075
    [426]	train-logloss:0.60039
    [427]	train-logloss:0.60039
    [428]	train-logloss:0.60120
    [429]	train-logloss:0.60134
    [430]	train-logloss:0.60121
    [431]	train-logloss:0.60132
    [432]	train-logloss:0.60147
    [433]	train-logloss:0.60110
    [434]	train-logloss:0.60113
    [435]	train-logloss:0.60103
    [436]	train-logloss:0.60065
    [437]	train-logloss:0.60031
    [438]	train-logloss:0.60043
    [439]	train-logloss:0.60048
    [440]	train-logloss:0.60005
    [441]	train-logloss:0.59975
    [442]	train-logloss:0.59958
    [443]	train-logloss:0.59946
    [444]	train-logloss:0.59932
    [445]	train-logloss:0.59964
    [446]	train-logloss:0.59884
    [447]	train-logloss:0.59847
    [448]	train-logloss:0.59863
    [449]	train-logloss:0.59869
    [450]	train-logloss:0.59856
    [451]	train-logloss:0.59894
    [452]	train-logloss:0.59901
    [453]	train-logloss:0.59873
    [454]	train-logloss:0.59953
    [455]	train-logloss:0.59953
    [456]	train-logloss:0.59972
    [457]	train-logloss:0.59962
    [458]	train-logloss:0.59994
    [459]	train-logloss:0.60006
    [460]	train-logloss:0.60028
    [461]	train-logloss:0.60110
    [462]	train-logloss:0.60111
    [463]	train-logloss:0.60122
    [464]	train-logloss:0.60074
    [465]	train-logloss:0.60093
    [466]	train-logloss:0.60080
    [467]	train-logloss:0.60120
    [468]	train-logloss:0.60122
    [469]	train-logloss:0.60124
    [470]	train-logloss:0.60122
    [471]	train-logloss:0.60116
    [472]	train-logloss:0.60101
    [473]	train-logloss:0.60090
    [474]	train-logloss:0.60111
    [475]	train-logloss:0.60109
    [476]	train-logloss:0.60151
    [477]	train-logloss:0.60201
    [478]	train-logloss:0.60160
    [479]	train-logloss:0.60101
    [480]	train-logloss:0.60132
    [481]	train-logloss:0.60067
    [482]	train-logloss:0.60054
    [483]	train-logloss:0.60041
    [484]	train-logloss:0.60017
    [485]	train-logloss:0.60025
    [486]	train-logloss:0.60024
    [487]	train-logloss:0.59967
    [488]	train-logloss:0.59935
    [489]	train-logloss:0.59868
    [490]	train-logloss:0.59907
    [491]	train-logloss:0.59912
    [492]	train-logloss:0.59919
    [493]	train-logloss:0.59890
    [494]	train-logloss:0.59955
    [495]	train-logloss:0.59947
    [496]	train-logloss:0.59907
    [497]	train-logloss:0.59937
    [498]	train-logloss:0.59933
    [499]	train-logloss:0.59960
    [500]	train-logloss:0.60029
    [501]	train-logloss:0.60047
    [502]	train-logloss:0.60013
    [503]	train-logloss:0.59989
    [504]	train-logloss:0.60059
    [505]	train-logloss:0.60072
    [506]	train-logloss:0.60102
    [507]	train-logloss:0.60086
    [508]	train-logloss:0.60060
    [509]	train-logloss:0.60126
    [510]	train-logloss:0.60112
    [511]	train-logloss:0.60126
    [512]	train-logloss:0.60129
    [513]	train-logloss:0.60059
    [514]	train-logloss:0.59989
    [515]	train-logloss:0.60005
    [516]	train-logloss:0.59968
    [517]	train-logloss:0.60008
    [518]	train-logloss:0.60084
    [519]	train-logloss:0.60062
    [520]	train-logloss:0.60111
    [521]	train-logloss:0.60070
    [522]	train-logloss:0.60063
    [523]	train-logloss:0.60065
    [524]	train-logloss:0.60044
    [525]	train-logloss:0.60053
    [526]	train-logloss:0.60099
    [527]	train-logloss:0.60125
    [528]	train-logloss:0.60105
    [529]	train-logloss:0.60155
    [530]	train-logloss:0.60176
    [531]	train-logloss:0.60249
    [532]	train-logloss:0.60304
    [533]	train-logloss:0.60372
    [534]	train-logloss:0.60326
    [535]	train-logloss:0.60391
    [536]	train-logloss:0.60371
    [537]	train-logloss:0.60472
    [538]	train-logloss:0.60431
    [539]	train-logloss:0.60337
    [540]	train-logloss:0.60355
    [541]	train-logloss:0.60365
    [542]	train-logloss:0.60295
    [543]	train-logloss:0.60268
    [544]	train-logloss:0.60312
    [545]	train-logloss:0.60293
    [546]	train-logloss:0.60275
    [547]	train-logloss:0.60344
    [548]	train-logloss:0.60334
    [549]	train-logloss:0.60411
    [550]	train-logloss:0.60460
    [551]	train-logloss:0.60409
    [552]	train-logloss:0.60423
    [553]	train-logloss:0.60366
    [554]	train-logloss:0.60341
    [555]	train-logloss:0.60364
    [556]	train-logloss:0.60365
    [557]	train-logloss:0.60316
    [558]	train-logloss:0.60353
    [559]	train-logloss:0.60382
    [560]	train-logloss:0.60396
    [561]	train-logloss:0.60426
    [562]	train-logloss:0.60465
    [563]	train-logloss:0.60500
    [564]	train-logloss:0.60502
    [565]	train-logloss:0.60465
    [566]	train-logloss:0.60496
    [567]	train-logloss:0.60545
    [568]	train-logloss:0.60523
    [569]	train-logloss:0.60451
    [570]	train-logloss:0.60424
    [571]	train-logloss:0.60479
    [572]	train-logloss:0.60501
    [573]	train-logloss:0.60472
    [574]	train-logloss:0.60399
    [575]	train-logloss:0.60399
    [576]	train-logloss:0.60339
    [577]	train-logloss:0.60306
    [578]	train-logloss:0.60286
    [579]	train-logloss:0.60302
    [580]	train-logloss:0.60266
    [581]	train-logloss:0.60206
    [582]	train-logloss:0.60216
    [583]	train-logloss:0.60172
    [584]	train-logloss:0.60186
    [585]	train-logloss:0.60173
    [586]	train-logloss:0.60159
    [587]	train-logloss:0.60130
    [588]	train-logloss:0.60173
    [589]	train-logloss:0.60182
    [590]	train-logloss:0.60176
    [591]	train-logloss:0.60224
    [592]	train-logloss:0.60242
    [593]	train-logloss:0.60209
    [594]	train-logloss:0.60148
    [595]	train-logloss:0.60173
    [596]	train-logloss:0.60187
    [597]	train-logloss:0.60157
    [598]	train-logloss:0.60219
    [599]	train-logloss:0.60211
    [600]	train-logloss:0.60197
    [601]	train-logloss:0.60217
    [602]	train-logloss:0.60158
    [603]	train-logloss:0.60171
    [604]	train-logloss:0.60143
    [605]	train-logloss:0.60067
    [606]	train-logloss:0.60052
    [607]	train-logloss:0.60008
    [608]	train-logloss:0.59992
    [609]	train-logloss:0.60023
    [610]	train-logloss:0.60063
    [611]	train-logloss:0.60079
    [612]	train-logloss:0.60056
    [613]	train-logloss:0.60045
    [614]	train-logloss:0.60035
    [615]	train-logloss:0.60040
    [616]	train-logloss:0.60038
    [617]	train-logloss:0.60047
    [618]	train-logloss:0.60006
    [619]	train-logloss:0.60058
    [620]	train-logloss:0.60048
    [621]	train-logloss:0.60130
    [622]	train-logloss:0.60134
    [623]	train-logloss:0.60108
    [624]	train-logloss:0.60107
    [625]	train-logloss:0.60103
    [626]	train-logloss:0.60110
    [627]	train-logloss:0.60111
    [628]	train-logloss:0.60118
    [629]	train-logloss:0.60107
    [630]	train-logloss:0.60026
    [631]	train-logloss:0.60035
    [632]	train-logloss:0.60089
    [633]	train-logloss:0.60139
    [634]	train-logloss:0.60136
    [635]	train-logloss:0.60107
    [636]	train-logloss:0.60094
    [637]	train-logloss:0.60075
    [638]	train-logloss:0.60102
    [639]	train-logloss:0.60164
    [640]	train-logloss:0.60075
    [641]	train-logloss:0.60064
    [642]	train-logloss:0.60051
    [643]	train-logloss:0.60076
    [644]	train-logloss:0.60053
    [645]	train-logloss:0.60062
    [646]	train-logloss:0.60055
    [647]	train-logloss:0.60115
    [648]	train-logloss:0.60093
    [649]	train-logloss:0.60052
    [650]	train-logloss:0.60054
    [651]	train-logloss:0.60064
    [652]	train-logloss:0.60126
    [653]	train-logloss:0.60113
    [654]	train-logloss:0.60096
    [655]	train-logloss:0.60108
    [656]	train-logloss:0.60129
    [657]	train-logloss:0.60122
    [658]	train-logloss:0.60162
    [659]	train-logloss:0.60155
    [660]	train-logloss:0.60163
    [661]	train-logloss:0.60166
    [662]	train-logloss:0.60170
    [663]	train-logloss:0.60317
    [664]	train-logloss:0.60358
    [665]	train-logloss:0.60430
    [666]	train-logloss:0.60406
    [667]	train-logloss:0.60419
    [668]	train-logloss:0.60394
    [669]	train-logloss:0.60423
    [670]	train-logloss:0.60479
    [671]	train-logloss:0.60492
    [672]	train-logloss:0.60493
    [673]	train-logloss:0.60458
    [674]	train-logloss:0.60413
    [675]	train-logloss:0.60381
    [676]	train-logloss:0.60380
    [677]	train-logloss:0.60329
    [678]	train-logloss:0.60327
    [679]	train-logloss:0.60334
    [680]	train-logloss:0.60352
    [681]	train-logloss:0.60370
    [682]	train-logloss:0.60361
    [683]	train-logloss:0.60389
    [684]	train-logloss:0.60361
    [685]	train-logloss:0.60419
    [686]	train-logloss:0.60502
    [687]	train-logloss:0.60500
    [688]	train-logloss:0.60507
    [689]	train-logloss:0.60466
    [690]	train-logloss:0.60461
    [691]	train-logloss:0.60461
    [692]	train-logloss:0.60505
    [693]	train-logloss:0.60527
    [694]	train-logloss:0.60532
    [695]	train-logloss:0.60534
    [696]	train-logloss:0.60565
    [697]	train-logloss:0.60592
    [698]	train-logloss:0.60541
    [699]	train-logloss:0.60534
    [700]	train-logloss:0.60509
    [701]	train-logloss:0.60491
    [702]	train-logloss:0.60503
    [703]	train-logloss:0.60507
    [704]	train-logloss:0.60564
    [705]	train-logloss:0.60548
    [706]	train-logloss:0.60611
    [707]	train-logloss:0.60603
    [708]	train-logloss:0.60553
    [709]	train-logloss:0.60522
    [710]	train-logloss:0.60433
    [711]	train-logloss:0.60431
    [712]	train-logloss:0.60441
    [713]	train-logloss:0.60433
    [714]	train-logloss:0.60479
    [715]	train-logloss:0.60464
    [716]	train-logloss:0.60522
    [717]	train-logloss:0.60565
    [718]	train-logloss:0.60521
    [719]	train-logloss:0.60472
    [720]	train-logloss:0.60502
    [721]	train-logloss:0.60541
    [722]	train-logloss:0.60551
    [723]	train-logloss:0.60531
    [724]	train-logloss:0.60464
    [725]	train-logloss:0.60453
    [726]	train-logloss:0.60449
    [727]	train-logloss:0.60426
    [728]	train-logloss:0.60378
    [729]	train-logloss:0.60523
    [730]	train-logloss:0.60574
    [731]	train-logloss:0.60550
    [732]	train-logloss:0.60547
    [733]	train-logloss:0.60580
    [734]	train-logloss:0.60546
    [735]	train-logloss:0.60541
    [736]	train-logloss:0.60566
    [737]	train-logloss:0.60568
    [738]	train-logloss:0.60556
    [739]	train-logloss:0.60546
    [740]	train-logloss:0.60533
    [741]	train-logloss:0.60570
    [742]	train-logloss:0.60580
    [743]	train-logloss:0.60562
    [744]	train-logloss:0.60563
    [745]	train-logloss:0.60553
    [746]	train-logloss:0.60570
    [747]	train-logloss:0.60584
    [748]	train-logloss:0.60632
    [749]	train-logloss:0.60628
    [750]	train-logloss:0.60637
    [751]	train-logloss:0.60680
    [752]	train-logloss:0.60716
    [753]	train-logloss:0.60663
    [754]	train-logloss:0.60630
    [755]	train-logloss:0.60617
    [756]	train-logloss:0.60614
    [757]	train-logloss:0.60527
    [758]	train-logloss:0.60568
    [759]	train-logloss:0.60560
    [760]	train-logloss:0.60595
    [761]	train-logloss:0.60631
    [762]	train-logloss:0.60588
    [763]	train-logloss:0.60584
    [764]	train-logloss:0.60627
    [765]	train-logloss:0.60617
    [766]	train-logloss:0.60665
    [767]	train-logloss:0.60641
    [768]	train-logloss:0.60655
    [769]	train-logloss:0.60689
    [770]	train-logloss:0.60710
    [771]	train-logloss:0.60707
    [772]	train-logloss:0.60664
    [773]	train-logloss:0.60689
    [774]	train-logloss:0.60732
    [775]	train-logloss:0.60677
    [776]	train-logloss:0.60677
    [777]	train-logloss:0.60719
    [778]	train-logloss:0.60771
    [779]	train-logloss:0.60774
    [780]	train-logloss:0.60803
    [781]	train-logloss:0.60886
    [782]	train-logloss:0.60919
    [783]	train-logloss:0.60931
    [784]	train-logloss:0.60956
    [785]	train-logloss:0.60928
    [786]	train-logloss:0.60890
    [787]	train-logloss:0.60871
    [788]	train-logloss:0.60884
    [789]	train-logloss:0.60840
    [790]	train-logloss:0.60815
    [791]	train-logloss:0.60824
    [792]	train-logloss:0.60808
    [793]	train-logloss:0.60843
    [794]	train-logloss:0.60818
    [795]	train-logloss:0.60906
    [796]	train-logloss:0.60931
    [797]	train-logloss:0.60894
    [798]	train-logloss:0.60874
    [799]	train-logloss:0.60895
    [800]	train-logloss:0.60818
    [801]	train-logloss:0.60806
    [802]	train-logloss:0.60856
    [803]	train-logloss:0.60939
    [804]	train-logloss:0.60937
    [805]	train-logloss:0.60924
    [806]	train-logloss:0.60880
    [807]	train-logloss:0.60893
    [808]	train-logloss:0.60851
    [809]	train-logloss:0.60872
    [810]	train-logloss:0.60823
    [811]	train-logloss:0.60924
    [812]	train-logloss:0.60916
    [813]	train-logloss:0.60913
    [814]	train-logloss:0.60906
    [815]	train-logloss:0.60876
    [816]	train-logloss:0.60875
    [817]	train-logloss:0.60929
    [818]	train-logloss:0.60952
    [819]	train-logloss:0.60933
    [820]	train-logloss:0.60891
    [821]	train-logloss:0.60856
    [822]	train-logloss:0.60921
    [823]	train-logloss:0.60961
    [824]	train-logloss:0.60921
    [825]	train-logloss:0.60899
    [826]	train-logloss:0.60953
    [827]	train-logloss:0.61011
    [828]	train-logloss:0.60985
    [829]	train-logloss:0.60952
    [830]	train-logloss:0.60889
    [831]	train-logloss:0.60909
    [832]	train-logloss:0.60925
    [833]	train-logloss:0.60953
    [834]	train-logloss:0.60918
    [835]	train-logloss:0.60896
    [836]	train-logloss:0.60951
    [837]	train-logloss:0.60939
    [838]	train-logloss:0.60935
    [839]	train-logloss:0.60904
    [840]	train-logloss:0.60951
    [841]	train-logloss:0.61017
    [842]	train-logloss:0.61034
    [843]	train-logloss:0.61009
    [844]	train-logloss:0.61010
    [845]	train-logloss:0.61063
    [846]	train-logloss:0.61112
    [847]	train-logloss:0.61078
    [848]	train-logloss:0.61036
    [849]	train-logloss:0.61058
    [850]	train-logloss:0.61066
    [851]	train-logloss:0.61041
    [852]	train-logloss:0.61029
    [853]	train-logloss:0.60977
    [854]	train-logloss:0.60990
    [855]	train-logloss:0.60954
    [856]	train-logloss:0.60964
    [857]	train-logloss:0.60979
    [858]	train-logloss:0.60995
    [859]	train-logloss:0.60974
    [860]	train-logloss:0.60945
    [861]	train-logloss:0.60979
    [862]	train-logloss:0.61024
    [863]	train-logloss:0.61075
    [864]	train-logloss:0.61087
    [865]	train-logloss:0.61062
    [866]	train-logloss:0.61108
    [867]	train-logloss:0.61132
    [868]	train-logloss:0.61127
    [869]	train-logloss:0.61123
    [870]	train-logloss:0.61163
    [871]	train-logloss:0.61160
    [872]	train-logloss:0.61153
    [873]	train-logloss:0.61156
    [874]	train-logloss:0.61207
    [875]	train-logloss:0.61186
    [876]	train-logloss:0.61301
    [877]	train-logloss:0.61300
    [878]	train-logloss:0.61276
    [879]	train-logloss:0.61250
    [880]	train-logloss:0.61269
    [881]	train-logloss:0.61302
    [882]	train-logloss:0.61330
    [883]	train-logloss:0.61256
    [884]	train-logloss:0.61219
    [885]	train-logloss:0.61190
    [886]	train-logloss:0.61175
    [887]	train-logloss:0.61211
    [888]	train-logloss:0.61195
    [889]	train-logloss:0.61177
    [890]	train-logloss:0.61180
    [891]	train-logloss:0.61172
    [892]	train-logloss:0.61242
    [893]	train-logloss:0.61320
    [894]	train-logloss:0.61337
    [895]	train-logloss:0.61354
    [896]	train-logloss:0.61354
    [897]	train-logloss:0.61361
    [898]	train-logloss:0.61390
    [899]	train-logloss:0.61390
    [900]	train-logloss:0.61439
    [901]	train-logloss:0.61473
    [902]	train-logloss:0.61455
    [903]	train-logloss:0.61482
    [904]	train-logloss:0.61491
    [905]	train-logloss:0.61608
    [906]	train-logloss:0.61604
    [907]	train-logloss:0.61654
    [908]	train-logloss:0.61628
    [909]	train-logloss:0.61609
    [910]	train-logloss:0.61661
    [911]	train-logloss:0.61665
    [912]	train-logloss:0.61649
    [913]	train-logloss:0.61661
    [914]	train-logloss:0.61669
    [915]	train-logloss:0.61661
    [916]	train-logloss:0.61669
    [917]	train-logloss:0.61610
    [918]	train-logloss:0.61622
    [919]	train-logloss:0.61678
    [920]	train-logloss:0.61674
    [921]	train-logloss:0.61652
    [922]	train-logloss:0.61651
    [923]	train-logloss:0.61610
    [924]	train-logloss:0.61625
    [925]	train-logloss:0.61607
    [926]	train-logloss:0.61634
    [927]	train-logloss:0.61619
    [928]	train-logloss:0.61594
    [929]	train-logloss:0.61565
    [930]	train-logloss:0.61541
    [931]	train-logloss:0.61557
    [932]	train-logloss:0.61549
    [933]	train-logloss:0.61504
    [934]	train-logloss:0.61500
    [935]	train-logloss:0.61530
    [936]	train-logloss:0.61608
    [937]	train-logloss:0.61571
    [938]	train-logloss:0.61553
    [939]	train-logloss:0.61567
    [940]	train-logloss:0.61549
    [941]	train-logloss:0.61562
    [942]	train-logloss:0.61594
    [943]	train-logloss:0.61611
    [944]	train-logloss:0.61579
    [945]	train-logloss:0.61624
    [946]	train-logloss:0.61548
    [947]	train-logloss:0.61579
    [948]	train-logloss:0.61570
    [949]	train-logloss:0.61623
    [950]	train-logloss:0.61624
    [951]	train-logloss:0.61583
    [952]	train-logloss:0.61581
    [953]	train-logloss:0.61566
    [954]	train-logloss:0.61573
    [955]	train-logloss:0.61590
    [956]	train-logloss:0.61602
    [957]	train-logloss:0.61595
    [958]	train-logloss:0.61607
    [959]	train-logloss:0.61633
    [960]	train-logloss:0.61581
    [961]	train-logloss:0.61588
    [962]	train-logloss:0.61593
    [963]	train-logloss:0.61603
    [964]	train-logloss:0.61550
    [965]	train-logloss:0.61553
    [966]	train-logloss:0.61595
    [967]	train-logloss:0.61583
    [968]	train-logloss:0.61558
    [969]	train-logloss:0.61575
    [970]	train-logloss:0.61599
    [971]	train-logloss:0.61579
    [972]	train-logloss:0.61623
    [973]	train-logloss:0.61584
    [974]	train-logloss:0.61529
    [975]	train-logloss:0.61515
    [976]	train-logloss:0.61492
    [977]	train-logloss:0.61465
    [978]	train-logloss:0.61481
    [979]	train-logloss:0.61462
    [980]	train-logloss:0.61420
    [981]	train-logloss:0.61395
    [982]	train-logloss:0.61406
    [983]	train-logloss:0.61360
    [984]	train-logloss:0.61340
    [985]	train-logloss:0.61345
    [986]	train-logloss:0.61342
    [987]	train-logloss:0.61302
    [988]	train-logloss:0.61285
    [989]	train-logloss:0.61300
    [990]	train-logloss:0.61285
    [991]	train-logloss:0.61253
    [992]	train-logloss:0.61262
    [993]	train-logloss:0.61249
    [994]	train-logloss:0.61250
    [995]	train-logloss:0.61245
    [996]	train-logloss:0.61260
    [997]	train-logloss:0.61251
    [998]	train-logloss:0.61306
    [999]	train-logloss:0.61383
    [1000]	train-logloss:0.61397
    [1001]	train-logloss:0.61455
    [1002]	train-logloss:0.61472
    [1003]	train-logloss:0.61494
    [1004]	train-logloss:0.61473
    [1005]	train-logloss:0.61453
    [1006]	train-logloss:0.61421
    [1007]	train-logloss:0.61468
    [1008]	train-logloss:0.61430
    [1009]	train-logloss:0.61480
    [1010]	train-logloss:0.61528
    [1011]	train-logloss:0.61538
    [1012]	train-logloss:0.61550
    [1013]	train-logloss:0.61584
    [1014]	train-logloss:0.61590
    [1015]	train-logloss:0.61605
    [1016]	train-logloss:0.61570
    [1017]	train-logloss:0.61538
    [1018]	train-logloss:0.61533
    [1019]	train-logloss:0.61534
    [1020]	train-logloss:0.61527
    [1021]	train-logloss:0.61568
    [1022]	train-logloss:0.61605
    [1023]	train-logloss:0.61607
    [1024]	train-logloss:0.61542
    [1025]	train-logloss:0.61558
    [1026]	train-logloss:0.61556
    [1027]	train-logloss:0.61553
    [1028]	train-logloss:0.61594
    [1029]	train-logloss:0.61582
    [1030]	train-logloss:0.61594
    [1031]	train-logloss:0.61604
    [1032]	train-logloss:0.61639
    [1033]	train-logloss:0.61661
    [1034]	train-logloss:0.61689
    [1035]	train-logloss:0.61686
    [1036]	train-logloss:0.61699
    [1037]	train-logloss:0.61677
    [1038]	train-logloss:0.61704
    [1039]	train-logloss:0.61679
    [1040]	train-logloss:0.61639
    [1041]	train-logloss:0.61661
    [1042]	train-logloss:0.61671
    [1043]	train-logloss:0.61707
    [1044]	train-logloss:0.61705
    [1045]	train-logloss:0.61700
    [1046]	train-logloss:0.61702
    [1047]	train-logloss:0.61658
    [1048]	train-logloss:0.61620
    [1049]	train-logloss:0.61636
    [1050]	train-logloss:0.61652
    [1051]	train-logloss:0.61664
    [1052]	train-logloss:0.61641
    [1053]	train-logloss:0.61597
    [1054]	train-logloss:0.61604
    [1055]	train-logloss:0.61616
    [1056]	train-logloss:0.61564
    [1057]	train-logloss:0.61594
    [1058]	train-logloss:0.61626
    [1059]	train-logloss:0.61589
    [1060]	train-logloss:0.61572
    [1061]	train-logloss:0.61588
    [1062]	train-logloss:0.61573
    [1063]	train-logloss:0.61585
    [1064]	train-logloss:0.61614
    [1065]	train-logloss:0.61631
    [1066]	train-logloss:0.61634
    [1067]	train-logloss:0.61673
    [1068]	train-logloss:0.61688
    [1069]	train-logloss:0.61712
    [1070]	train-logloss:0.61709
    [1071]	train-logloss:0.61696
    [1072]	train-logloss:0.61791
    [1073]	train-logloss:0.61820
    [1074]	train-logloss:0.61861
    [1075]	train-logloss:0.61900
    [1076]	train-logloss:0.61834
    [1077]	train-logloss:0.61826
    [1078]	train-logloss:0.61791
    [1079]	train-logloss:0.61792
    [1080]	train-logloss:0.61756
    [1081]	train-logloss:0.61741
    [1082]	train-logloss:0.61676
    [1083]	train-logloss:0.61664
    [1084]	train-logloss:0.61645
    [1085]	train-logloss:0.61573
    [1086]	train-logloss:0.61622
    [1087]	train-logloss:0.61672
    [1088]	train-logloss:0.61692
    [1089]	train-logloss:0.61723
    [1090]	train-logloss:0.61650
    [1091]	train-logloss:0.61586
    [1092]	train-logloss:0.61588
    [1093]	train-logloss:0.61634
    [1094]	train-logloss:0.61671
    [1095]	train-logloss:0.61643
    [1096]	train-logloss:0.61593
    [1097]	train-logloss:0.61576
    [1098]	train-logloss:0.61546
    [1099]	train-logloss:0.61495
    [1100]	train-logloss:0.61523
    [1101]	train-logloss:0.61544
    [1102]	train-logloss:0.61590
    [1103]	train-logloss:0.61593
    [1104]	train-logloss:0.61564
    [1105]	train-logloss:0.61594
    [1106]	train-logloss:0.61570
    [1107]	train-logloss:0.61605
    [1108]	train-logloss:0.61652
    [1109]	train-logloss:0.61626
    [1110]	train-logloss:0.61620
    [1111]	train-logloss:0.61637
    [1112]	train-logloss:0.61701
    [1113]	train-logloss:0.61639
    [1114]	train-logloss:0.61580
    [1115]	train-logloss:0.61562
    [1116]	train-logloss:0.61616
    [1117]	train-logloss:0.61612
    [1118]	train-logloss:0.61586
    [1119]	train-logloss:0.61648
    [1120]	train-logloss:0.61633
    [1121]	train-logloss:0.61633
    [1122]	train-logloss:0.61712
    [1123]	train-logloss:0.61759
    [1124]	train-logloss:0.61791
    [1125]	train-logloss:0.61720
    [1126]	train-logloss:0.61710
    [1127]	train-logloss:0.61720
    [1128]	train-logloss:0.61675
    [1129]	train-logloss:0.61666
    [1130]	train-logloss:0.61628
    [1131]	train-logloss:0.61601
    [1132]	train-logloss:0.61628
    [1133]	train-logloss:0.61608
    [1134]	train-logloss:0.61602
    [1135]	train-logloss:0.61527
    [1136]	train-logloss:0.61503
    [1137]	train-logloss:0.61488
    [1138]	train-logloss:0.61479
    [1139]	train-logloss:0.61432
    [1140]	train-logloss:0.61408
    [1141]	train-logloss:0.61431
    [1142]	train-logloss:0.61440
    [1143]	train-logloss:0.61479
    [1144]	train-logloss:0.61484
    [1145]	train-logloss:0.61439
    [1146]	train-logloss:0.61438
    [1147]	train-logloss:0.61478
    [1148]	train-logloss:0.61462
    [1149]	train-logloss:0.61460
    [1150]	train-logloss:0.61440
    [1151]	train-logloss:0.61477
    [1152]	train-logloss:0.61534
    [1153]	train-logloss:0.61534
    [1154]	train-logloss:0.61508
    [1155]	train-logloss:0.61530
    [1156]	train-logloss:0.61556
    [1157]	train-logloss:0.61549
    [1158]	train-logloss:0.61548
    [1159]	train-logloss:0.61577
    [1160]	train-logloss:0.61552
    [1161]	train-logloss:0.61577
    [1162]	train-logloss:0.61566
    [1163]	train-logloss:0.61610
    [1164]	train-logloss:0.61608
    [1165]	train-logloss:0.61612
    [1166]	train-logloss:0.61637
    [1167]	train-logloss:0.61638
    [1168]	train-logloss:0.61655
    [1169]	train-logloss:0.61646
    [1170]	train-logloss:0.61632
    [1171]	train-logloss:0.61654
    [1172]	train-logloss:0.61617
    [1173]	train-logloss:0.61593
    [1174]	train-logloss:0.61582
    [1175]	train-logloss:0.61604
    [1176]	train-logloss:0.61593
    [1177]	train-logloss:0.61602
    [1178]	train-logloss:0.61590
    [1179]	train-logloss:0.61559
    [1180]	train-logloss:0.61554
    [1181]	train-logloss:0.61582
    [1182]	train-logloss:0.61582
    [1183]	train-logloss:0.61576
    [1184]	train-logloss:0.61592
    [1185]	train-logloss:0.61615
    [1186]	train-logloss:0.61567
    [1187]	train-logloss:0.61549
    [1188]	train-logloss:0.61548
    [1189]	train-logloss:0.61619
    [1190]	train-logloss:0.61626
    [1191]	train-logloss:0.61679
    [1192]	train-logloss:0.61673
    [1193]	train-logloss:0.61731
    [1194]	train-logloss:0.61746
    [1195]	train-logloss:0.61761
    [1196]	train-logloss:0.61761
    [1197]	train-logloss:0.61751
    [1198]	train-logloss:0.61805
    [1199]	train-logloss:0.61834
    [1200]	train-logloss:0.61812
    [1201]	train-logloss:0.61811
    [1202]	train-logloss:0.61823
    [1203]	train-logloss:0.61798
    [1204]	train-logloss:0.61777
    [1205]	train-logloss:0.61818
    [1206]	train-logloss:0.61818
    [1207]	train-logloss:0.61824
    [1208]	train-logloss:0.61831
    [1209]	train-logloss:0.61811
    [1210]	train-logloss:0.61812
    [1211]	train-logloss:0.61833
    [1212]	train-logloss:0.61835
    [1213]	train-logloss:0.61837
    [1214]	train-logloss:0.61841
    [1215]	train-logloss:0.61840
    [1216]	train-logloss:0.61836
    [1217]	train-logloss:0.61805
    [1218]	train-logloss:0.61808
    [1219]	train-logloss:0.61835
    [1220]	train-logloss:0.61845
    [1221]	train-logloss:0.61870
    [1222]	train-logloss:0.61850
    [1223]	train-logloss:0.61854
    [1224]	train-logloss:0.61863
    [1225]	train-logloss:0.61899
    [1226]	train-logloss:0.61892
    [1227]	train-logloss:0.61846
    [1228]	train-logloss:0.61747
    [1229]	train-logloss:0.61741
    [1230]	train-logloss:0.61723
    [1231]	train-logloss:0.61720
    [1232]	train-logloss:0.61760
    [1233]	train-logloss:0.61721
    [1234]	train-logloss:0.61750
    [1235]	train-logloss:0.61749
    [1236]	train-logloss:0.61791
    [1237]	train-logloss:0.61784
    [1238]	train-logloss:0.61782
    [1239]	train-logloss:0.61761
    [1240]	train-logloss:0.61788
    [1241]	train-logloss:0.61803
    [1242]	train-logloss:0.61798
    [1243]	train-logloss:0.61792
    [1244]	train-logloss:0.61842
    [1245]	train-logloss:0.61798
    [1246]	train-logloss:0.61819
    [1247]	train-logloss:0.61888
    [1248]	train-logloss:0.61904
    [1249]	train-logloss:0.61933
    [1250]	train-logloss:0.61934
    [1251]	train-logloss:0.61989
    [1252]	train-logloss:0.61986
    [1253]	train-logloss:0.61987
    [1254]	train-logloss:0.62028
    [1255]	train-logloss:0.62067
    [1256]	train-logloss:0.62057
    [1257]	train-logloss:0.62052
    [1258]	train-logloss:0.62099
    [1259]	train-logloss:0.62093
    [1260]	train-logloss:0.62084
    [1261]	train-logloss:0.62128
    [1262]	train-logloss:0.62201
    [1263]	train-logloss:0.62241
    [1264]	train-logloss:0.62245
    [1265]	train-logloss:0.62252
    [1266]	train-logloss:0.62243
    [1267]	train-logloss:0.62244
    [1268]	train-logloss:0.62245
    [1269]	train-logloss:0.62248
    [1270]	train-logloss:0.62249
    [1271]	train-logloss:0.62313
    [1272]	train-logloss:0.62362
    [1273]	train-logloss:0.62363
    [1274]	train-logloss:0.62333
    [1275]	train-logloss:0.62393
    [1276]	train-logloss:0.62373
    [1277]	train-logloss:0.62412
    [1278]	train-logloss:0.62350
    [1279]	train-logloss:0.62284
    [1280]	train-logloss:0.62233
    [1281]	train-logloss:0.62190
    [1282]	train-logloss:0.62219
    [1283]	train-logloss:0.62188
    [1284]	train-logloss:0.62152
    [1285]	train-logloss:0.62160
    [1286]	train-logloss:0.62161
    [1287]	train-logloss:0.62144
    [1288]	train-logloss:0.62174
    [1289]	train-logloss:0.62205
    [1290]	train-logloss:0.62258
    [1291]	train-logloss:0.62214
    [1292]	train-logloss:0.62211
    [1293]	train-logloss:0.62220
    [1294]	train-logloss:0.62162
    [1295]	train-logloss:0.62190
    [1296]	train-logloss:0.62167
    [1297]	train-logloss:0.62130
    [1298]	train-logloss:0.62131
    [1299]	train-logloss:0.62069
    [1300]	train-logloss:0.62077
    [1301]	train-logloss:0.62085
    [1302]	train-logloss:0.62065
    [1303]	train-logloss:0.62093
    [1304]	train-logloss:0.62098
    [1305]	train-logloss:0.62133
    [1306]	train-logloss:0.62180
    [1307]	train-logloss:0.62205
    [1308]	train-logloss:0.62153
    [1309]	train-logloss:0.62135
    [1310]	train-logloss:0.62109
    [1311]	train-logloss:0.62135
    [1312]	train-logloss:0.62126
    [1313]	train-logloss:0.62143
    [1314]	train-logloss:0.62136
    [1315]	train-logloss:0.62137
    [1316]	train-logloss:0.62184
    [1317]	train-logloss:0.62164
    [1318]	train-logloss:0.62177
    [1319]	train-logloss:0.62198
    [1320]	train-logloss:0.62296
    [1321]	train-logloss:0.62289
    [1322]	train-logloss:0.62195
    [1323]	train-logloss:0.62224
    [1324]	train-logloss:0.62239
    [1325]	train-logloss:0.62226
    [1326]	train-logloss:0.62231
    [1327]	train-logloss:0.62226
    [1328]	train-logloss:0.62208
    [1329]	train-logloss:0.62160
    [1330]	train-logloss:0.62211
    [1331]	train-logloss:0.62208
    [1332]	train-logloss:0.62155
    [1333]	train-logloss:0.62138
    [1334]	train-logloss:0.62145
    [1335]	train-logloss:0.62141
    [1336]	train-logloss:0.62144
    [1337]	train-logloss:0.62210
    [1338]	train-logloss:0.62197
    [1339]	train-logloss:0.62169
    [1340]	train-logloss:0.62142
    [1341]	train-logloss:0.62128
    [1342]	train-logloss:0.62129
    [1343]	train-logloss:0.62180
    [1344]	train-logloss:0.62237
    [1345]	train-logloss:0.62215
    [1346]	train-logloss:0.62250
    [1347]	train-logloss:0.62197
    [1348]	train-logloss:0.62196
    [1349]	train-logloss:0.62166
    [1350]	train-logloss:0.62169
    [1351]	train-logloss:0.62127
    [1352]	train-logloss:0.62157
    [1353]	train-logloss:0.62163
    [1354]	train-logloss:0.62116
    [1355]	train-logloss:0.62129
    [1356]	train-logloss:0.62164
    [1357]	train-logloss:0.62179
    [1358]	train-logloss:0.62193
    [1359]	train-logloss:0.62255
    [1360]	train-logloss:0.62253
    [1361]	train-logloss:0.62186
    [1362]	train-logloss:0.62189
    [1363]	train-logloss:0.62179
    [1364]	train-logloss:0.62182
    [1365]	train-logloss:0.62170
    [1366]	train-logloss:0.62147
    [1367]	train-logloss:0.62138
    [1368]	train-logloss:0.62146
    [1369]	train-logloss:0.62147
    [1370]	train-logloss:0.62220
    [1371]	train-logloss:0.62200
    [1372]	train-logloss:0.62165
    [1373]	train-logloss:0.62146
    [1374]	train-logloss:0.62162
    [1375]	train-logloss:0.62167
    [1376]	train-logloss:0.62154
    [1377]	train-logloss:0.62150
    [1378]	train-logloss:0.62163
    [1379]	train-logloss:0.62158
    [1380]	train-logloss:0.62126
    [1381]	train-logloss:0.62109
    [1382]	train-logloss:0.62034
    [1383]	train-logloss:0.62063
    [1384]	train-logloss:0.61993
    [1385]	train-logloss:0.62037
    [1386]	train-logloss:0.62061
    [1387]	train-logloss:0.62109
    [1388]	train-logloss:0.62067
    [1389]	train-logloss:0.62111
    [1390]	train-logloss:0.62117
    [1391]	train-logloss:0.62114
    [1392]	train-logloss:0.62100
    [1393]	train-logloss:0.62126
    [1394]	train-logloss:0.62121
    [1395]	train-logloss:0.62034
    [1396]	train-logloss:0.62015
    [1397]	train-logloss:0.61977
    [1398]	train-logloss:0.61984
    [1399]	train-logloss:0.61980
    [1400]	train-logloss:0.62001
    [1401]	train-logloss:0.62021
    [1402]	train-logloss:0.61998
    [1403]	train-logloss:0.61985
    [1404]	train-logloss:0.62000
    [1405]	train-logloss:0.61983
    [1406]	train-logloss:0.62019
    [1407]	train-logloss:0.62021
    [1408]	train-logloss:0.62011
    [1409]	train-logloss:0.62013
    [1410]	train-logloss:0.62020
    [1411]	train-logloss:0.62035
    [1412]	train-logloss:0.62013
    [1413]	train-logloss:0.62051
    [1414]	train-logloss:0.62023
    [1415]	train-logloss:0.61969
    [1416]	train-logloss:0.61964
    [1417]	train-logloss:0.62012
    [1418]	train-logloss:0.61977
    [1419]	train-logloss:0.62004
    [1420]	train-logloss:0.61985
    [1421]	train-logloss:0.62022
    [1422]	train-logloss:0.62018
    [1423]	train-logloss:0.62115
    [1424]	train-logloss:0.62131
    [1425]	train-logloss:0.62105
    [1426]	train-logloss:0.62091
    [1427]	train-logloss:0.62092
    [1428]	train-logloss:0.62157
    [1429]	train-logloss:0.62142
    [1430]	train-logloss:0.62116
    [1431]	train-logloss:0.62139
    [1432]	train-logloss:0.62133
    [1433]	train-logloss:0.62163
    [1434]	train-logloss:0.62205
    [1435]	train-logloss:0.62173
    [1436]	train-logloss:0.62203
    [1437]	train-logloss:0.62223
    [1438]	train-logloss:0.62139
    [1439]	train-logloss:0.62153
    [1440]	train-logloss:0.62179
    [1441]	train-logloss:0.62182
    [1442]	train-logloss:0.62184
    [1443]	train-logloss:0.62181
    [1444]	train-logloss:0.62181
    [1445]	train-logloss:0.62172
    [1446]	train-logloss:0.62191
    [1447]	train-logloss:0.62234
    [1448]	train-logloss:0.62249
    [1449]	train-logloss:0.62289
    [1450]	train-logloss:0.62289
    [1451]	train-logloss:0.62240
    [1452]	train-logloss:0.62203
    [1453]	train-logloss:0.62179
    [1454]	train-logloss:0.62148
    [1455]	train-logloss:0.62208
    [1456]	train-logloss:0.62211
    [1457]	train-logloss:0.62210
    [1458]	train-logloss:0.62212
    [1459]	train-logloss:0.62243
    [1460]	train-logloss:0.62176
    [1461]	train-logloss:0.62173
    [1462]	train-logloss:0.62273
    [1463]	train-logloss:0.62274
    [1464]	train-logloss:0.62264
    [1465]	train-logloss:0.62251
    [1466]	train-logloss:0.62216
    [1467]	train-logloss:0.62178
    [1468]	train-logloss:0.62177
    [1469]	train-logloss:0.62123
    [1470]	train-logloss:0.62158
    [1471]	train-logloss:0.62149
    [1472]	train-logloss:0.62120
    [1473]	train-logloss:0.62089
    [1474]	train-logloss:0.62088
    [1475]	train-logloss:0.62042
    [1476]	train-logloss:0.62060
    [1477]	train-logloss:0.62094
    [1478]	train-logloss:0.62070
    [1479]	train-logloss:0.62138
    [1480]	train-logloss:0.62191
    [1481]	train-logloss:0.62263
    [1482]	train-logloss:0.62314
    [1483]	train-logloss:0.62297
    [1484]	train-logloss:0.62304
    [1485]	train-logloss:0.62302
    [1486]	train-logloss:0.62320
    [1487]	train-logloss:0.62371
    [1488]	train-logloss:0.62408
    [1489]	train-logloss:0.62425
    [1490]	train-logloss:0.62483
    [1491]	train-logloss:0.62470
    [1492]	train-logloss:0.62468
    [1493]	train-logloss:0.62445
    [1494]	train-logloss:0.62364
    [1495]	train-logloss:0.62281
    [1496]	train-logloss:0.62235
    [1497]	train-logloss:0.62246
    [1498]	train-logloss:0.62299
    [1499]	train-logloss:0.62292
    [1500]	train-logloss:0.62292
    [1501]	train-logloss:0.62397
    [1502]	train-logloss:0.62421
    [1503]	train-logloss:0.62474
    [1504]	train-logloss:0.62482
    [1505]	train-logloss:0.62449
    [1506]	train-logloss:0.62440
    [1507]	train-logloss:0.62389
    [1508]	train-logloss:0.62370
    [1509]	train-logloss:0.62357
    [1510]	train-logloss:0.62330
    [1511]	train-logloss:0.62317
    [1512]	train-logloss:0.62402
    [1513]	train-logloss:0.62354
    [1514]	train-logloss:0.62335
    [1515]	train-logloss:0.62294
    [1516]	train-logloss:0.62292
    [1517]	train-logloss:0.62292
    [1518]	train-logloss:0.62291
    [1519]	train-logloss:0.62241
    [1520]	train-logloss:0.62281
    [1521]	train-logloss:0.62292
    [1522]	train-logloss:0.62264
    [1523]	train-logloss:0.62284
    [1524]	train-logloss:0.62344
    [1525]	train-logloss:0.62342
    [1526]	train-logloss:0.62341
    [1527]	train-logloss:0.62322
    [1528]	train-logloss:0.62380
    [1529]	train-logloss:0.62396
    [1530]	train-logloss:0.62362
    [1531]	train-logloss:0.62355
    [1532]	train-logloss:0.62339
    [1533]	train-logloss:0.62331
    [1534]	train-logloss:0.62320
    [1535]	train-logloss:0.62286
    [1536]	train-logloss:0.62317
    [1537]	train-logloss:0.62443
    [1538]	train-logloss:0.62493
    [1539]	train-logloss:0.62527
    [1540]	train-logloss:0.62483
    [1541]	train-logloss:0.62509
    [1542]	train-logloss:0.62480
    [1543]	train-logloss:0.62506
    [1544]	train-logloss:0.62635
    [1545]	train-logloss:0.62708
    [1546]	train-logloss:0.62721
    [1547]	train-logloss:0.62686
    [1548]	train-logloss:0.62723
    [1549]	train-logloss:0.62748
    [1550]	train-logloss:0.62745
    [1551]	train-logloss:0.62808
    [1552]	train-logloss:0.62749
    [1553]	train-logloss:0.62703
    [1554]	train-logloss:0.62705
    [1555]	train-logloss:0.62714
    [1556]	train-logloss:0.62733
    [1557]	train-logloss:0.62796
    [1558]	train-logloss:0.62826
    [1559]	train-logloss:0.62826
    [1560]	train-logloss:0.62829
    [1561]	train-logloss:0.62839
    [1562]	train-logloss:0.62812
    [1563]	train-logloss:0.62794
    [1564]	train-logloss:0.62794
    [1565]	train-logloss:0.62733
    [1566]	train-logloss:0.62713
    [1567]	train-logloss:0.62760
    [1568]	train-logloss:0.62765
    [1569]	train-logloss:0.62734
    [1570]	train-logloss:0.62715
    [1571]	train-logloss:0.62716
    [1572]	train-logloss:0.62697
    [1573]	train-logloss:0.62685
    [1574]	train-logloss:0.62616
    [1575]	train-logloss:0.62604
    [1576]	train-logloss:0.62584
    [1577]	train-logloss:0.62552
    [1578]	train-logloss:0.62563
    [1579]	train-logloss:0.62520
    [1580]	train-logloss:0.62522
    [1581]	train-logloss:0.62523
    [1582]	train-logloss:0.62511
    [1583]	train-logloss:0.62505
    [1584]	train-logloss:0.62541
    [1585]	train-logloss:0.62588
    [1586]	train-logloss:0.62578
    [1587]	train-logloss:0.62553
    [1588]	train-logloss:0.62557
    [1589]	train-logloss:0.62467
    [1590]	train-logloss:0.62473
    [1591]	train-logloss:0.62508
    [1592]	train-logloss:0.62497
    [1593]	train-logloss:0.62453
    [1594]	train-logloss:0.62384
    [1595]	train-logloss:0.62420
    [1596]	train-logloss:0.62446
    [1597]	train-logloss:0.62479
    [1598]	train-logloss:0.62449
    [1599]	train-logloss:0.62449
    [1600]	train-logloss:0.62423
    [1601]	train-logloss:0.62411
    [1602]	train-logloss:0.62388
    [1603]	train-logloss:0.62411
    [1604]	train-logloss:0.62443
    [1605]	train-logloss:0.62469
    [1606]	train-logloss:0.62507
    [1607]	train-logloss:0.62572
    [1608]	train-logloss:0.62554
    [1609]	train-logloss:0.62555
    [1610]	train-logloss:0.62558
    [1611]	train-logloss:0.62570
    [1612]	train-logloss:0.62653
    [1613]	train-logloss:0.62706
    [1614]	train-logloss:0.62691
    [1615]	train-logloss:0.62700
    [1616]	train-logloss:0.62672
    [1617]	train-logloss:0.62688
    [1618]	train-logloss:0.62700
    [1619]	train-logloss:0.62699
    [1620]	train-logloss:0.62742
    [1621]	train-logloss:0.62767
    [1622]	train-logloss:0.62734
    [1623]	train-logloss:0.62717
    [1624]	train-logloss:0.62756
    [1625]	train-logloss:0.62705
    [1626]	train-logloss:0.62695
    [1627]	train-logloss:0.62633
    [1628]	train-logloss:0.62619
    [1629]	train-logloss:0.62691
    [1630]	train-logloss:0.62652
    [1631]	train-logloss:0.62642
    [1632]	train-logloss:0.62627
    [1633]	train-logloss:0.62633
    [1634]	train-logloss:0.62699
    [1635]	train-logloss:0.62705
    [1636]	train-logloss:0.62704
    [1637]	train-logloss:0.62736
    [1638]	train-logloss:0.62731
    [1639]	train-logloss:0.62708
    [1640]	train-logloss:0.62668
    [1641]	train-logloss:0.62663
    [1642]	train-logloss:0.62660
    [1643]	train-logloss:0.62673
    [1644]	train-logloss:0.62695
    [1645]	train-logloss:0.62719
    [1646]	train-logloss:0.62804
    [1647]	train-logloss:0.62804
    [1648]	train-logloss:0.62861
    [1649]	train-logloss:0.62823
    [1650]	train-logloss:0.62817
    [1651]	train-logloss:0.62793
    [1652]	train-logloss:0.62743
    [1653]	train-logloss:0.62737
    [1654]	train-logloss:0.62774
    [1655]	train-logloss:0.62777
    [1656]	train-logloss:0.62778
    [1657]	train-logloss:0.62840
    [1658]	train-logloss:0.62773
    [1659]	train-logloss:0.62748
    [1660]	train-logloss:0.62749
    [1661]	train-logloss:0.62737
    [1662]	train-logloss:0.62715
    [1663]	train-logloss:0.62719
    [1664]	train-logloss:0.62730
    [1665]	train-logloss:0.62723
    [1666]	train-logloss:0.62722
    [1667]	train-logloss:0.62713
    [1668]	train-logloss:0.62705
    [1669]	train-logloss:0.62717
    [1670]	train-logloss:0.62800
    [1671]	train-logloss:0.62689
    [1672]	train-logloss:0.62649
    [1673]	train-logloss:0.62711
    [1674]	train-logloss:0.62687
    [1675]	train-logloss:0.62650
    [1676]	train-logloss:0.62633
    [1677]	train-logloss:0.62623
    [1678]	train-logloss:0.62646
    [1679]	train-logloss:0.62636
    [1680]	train-logloss:0.62612
    [1681]	train-logloss:0.62655
    [1682]	train-logloss:0.62635
    [1683]	train-logloss:0.62605
    [1684]	train-logloss:0.62646
    [1685]	train-logloss:0.62708
    [1686]	train-logloss:0.62742
    [1687]	train-logloss:0.62785
    [1688]	train-logloss:0.62789
    [1689]	train-logloss:0.62822
    [1690]	train-logloss:0.62799
    [1691]	train-logloss:0.62868
    [1692]	train-logloss:0.62901
    [1693]	train-logloss:0.62901
    [1694]	train-logloss:0.62914
    [1695]	train-logloss:0.62889
    [1696]	train-logloss:0.62889
    [1697]	train-logloss:0.62943
    [1698]	train-logloss:0.63000
    [1699]	train-logloss:0.63004
    [1700]	train-logloss:0.63026
    [1701]	train-logloss:0.63075
    [1702]	train-logloss:0.63076
    [1703]	train-logloss:0.63148
    [1704]	train-logloss:0.63152
    [1705]	train-logloss:0.63151
    [1706]	train-logloss:0.63170
    [1707]	train-logloss:0.63178
    [1708]	train-logloss:0.63160
    [1709]	train-logloss:0.63154
    [1710]	train-logloss:0.63216
    [1711]	train-logloss:0.63176
    [1712]	train-logloss:0.63144
    [1713]	train-logloss:0.63144
    [1714]	train-logloss:0.63135
    [1715]	train-logloss:0.63146
    [1716]	train-logloss:0.63145
    [1717]	train-logloss:0.63156
    [1718]	train-logloss:0.63085
    [1719]	train-logloss:0.63143
    [1720]	train-logloss:0.63115
    [1721]	train-logloss:0.63196
    [1722]	train-logloss:0.63176
    [1723]	train-logloss:0.63173
    [1724]	train-logloss:0.63226
    [1725]	train-logloss:0.63247
    [1726]	train-logloss:0.63249
    [1727]	train-logloss:0.63195
    [1728]	train-logloss:0.63201
    [1729]	train-logloss:0.63176
    [1730]	train-logloss:0.63183
    [1731]	train-logloss:0.63172
    [1732]	train-logloss:0.63126
    [1733]	train-logloss:0.63168
    [1734]	train-logloss:0.63187
    [1735]	train-logloss:0.63190
    [1736]	train-logloss:0.63153
    [1737]	train-logloss:0.63155
    [1738]	train-logloss:0.63142
    [1739]	train-logloss:0.63193
    [1740]	train-logloss:0.63273
    [1741]	train-logloss:0.63286
    [1742]	train-logloss:0.63302
    [1743]	train-logloss:0.63290
    [1744]	train-logloss:0.63289
    [1745]	train-logloss:0.63304
    [1746]	train-logloss:0.63250
    [1747]	train-logloss:0.63258
    [1748]	train-logloss:0.63193
    [1749]	train-logloss:0.63185
    [1750]	train-logloss:0.63220
    [1751]	train-logloss:0.63252
    [1752]	train-logloss:0.63256
    [1753]	train-logloss:0.63246
    [1754]	train-logloss:0.63227
    [1755]	train-logloss:0.63293
    [1756]	train-logloss:0.63271
    [1757]	train-logloss:0.63324
    [1758]	train-logloss:0.63333
    [1759]	train-logloss:0.63328
    [1760]	train-logloss:0.63319
    [1761]	train-logloss:0.63320
    [1762]	train-logloss:0.63344
    [1763]	train-logloss:0.63367
    [1764]	train-logloss:0.63343
    [1765]	train-logloss:0.63387
    [1766]	train-logloss:0.63410
    [1767]	train-logloss:0.63494
    [1768]	train-logloss:0.63479
    [1769]	train-logloss:0.63492
    [1770]	train-logloss:0.63518
    [1771]	train-logloss:0.63433
    [1772]	train-logloss:0.63369
    [1773]	train-logloss:0.63367
    [1774]	train-logloss:0.63371
    [1775]	train-logloss:0.63405
    [1776]	train-logloss:0.63410
    [1777]	train-logloss:0.63479
    [1778]	train-logloss:0.63420
    [1779]	train-logloss:0.63421
    [1780]	train-logloss:0.63344
    [1781]	train-logloss:0.63337
    [1782]	train-logloss:0.63343
    [1783]	train-logloss:0.63341
    [1784]	train-logloss:0.63357
    [1785]	train-logloss:0.63359
    [1786]	train-logloss:0.63375
    [1787]	train-logloss:0.63367
    [1788]	train-logloss:0.63314
    [1789]	train-logloss:0.63308
    [1790]	train-logloss:0.63310
    [1791]	train-logloss:0.63399
    [1792]	train-logloss:0.63392
    [1793]	train-logloss:0.63406
    [1794]	train-logloss:0.63405
    [1795]	train-logloss:0.63456
    [1796]	train-logloss:0.63486
    [1797]	train-logloss:0.63499
    [1798]	train-logloss:0.63507
    [1799]	train-logloss:0.63509
    [1800]	train-logloss:0.63491
    [1801]	train-logloss:0.63487
    [1802]	train-logloss:0.63536
    [1803]	train-logloss:0.63584
    [1804]	train-logloss:0.63591
    [1805]	train-logloss:0.63588
    [1806]	train-logloss:0.63546
    [1807]	train-logloss:0.63529
    [1808]	train-logloss:0.63565
    [1809]	train-logloss:0.63558
    [1810]	train-logloss:0.63572
    [1811]	train-logloss:0.63561
    [1812]	train-logloss:0.63598
    [1813]	train-logloss:0.63634
    [1814]	train-logloss:0.63634
    [1815]	train-logloss:0.63663
    [1816]	train-logloss:0.63615
    [1817]	train-logloss:0.63646
    [1818]	train-logloss:0.63635
    [1819]	train-logloss:0.63620
    [1820]	train-logloss:0.63593
    [1821]	train-logloss:0.63538
    [1822]	train-logloss:0.63517
    [1823]	train-logloss:0.63479
    [1824]	train-logloss:0.63480
    [1825]	train-logloss:0.63417
    [1826]	train-logloss:0.63417
    [1827]	train-logloss:0.63357
    [1828]	train-logloss:0.63291
    [1829]	train-logloss:0.63237
    [1830]	train-logloss:0.63229
    [1831]	train-logloss:0.63239
    [1832]	train-logloss:0.63236
    [1833]	train-logloss:0.63249
    [1834]	train-logloss:0.63265
    [1835]	train-logloss:0.63263
    [1836]	train-logloss:0.63264
    [1837]	train-logloss:0.63256
    [1838]	train-logloss:0.63256
    [1839]	train-logloss:0.63252
    [1840]	train-logloss:0.63264
    [1841]	train-logloss:0.63257
    [1842]	train-logloss:0.63266
    [1843]	train-logloss:0.63267
    [1844]	train-logloss:0.63223
    [1845]	train-logloss:0.63223
    [1846]	train-logloss:0.63218
    [1847]	train-logloss:0.63234
    [1848]	train-logloss:0.63234
    [1849]	train-logloss:0.63235
    [1850]	train-logloss:0.63175
    [1851]	train-logloss:0.63204
    [1852]	train-logloss:0.63210
    [1853]	train-logloss:0.63177
    [1854]	train-logloss:0.63243
    [1855]	train-logloss:0.63226
    [1856]	train-logloss:0.63271
    [1857]	train-logloss:0.63206
    [1858]	train-logloss:0.63206
    [1859]	train-logloss:0.63191
    [1860]	train-logloss:0.63220
    [1861]	train-logloss:0.63236
    [1862]	train-logloss:0.63214
    [1863]	train-logloss:0.63248
    [1864]	train-logloss:0.63216
    [1865]	train-logloss:0.63245
    [1866]	train-logloss:0.63247
    [1867]	train-logloss:0.63262
    [1868]	train-logloss:0.63261
    [1869]	train-logloss:0.63266
    [1870]	train-logloss:0.63278
    [1871]	train-logloss:0.63256
    [1872]	train-logloss:0.63322
    [1873]	train-logloss:0.63320
    [1874]	train-logloss:0.63290
    [1875]	train-logloss:0.63291
    [1876]	train-logloss:0.63290
    [1877]	train-logloss:0.63275
    [1878]	train-logloss:0.63277
    [1879]	train-logloss:0.63280
    [1880]	train-logloss:0.63254
    [1881]	train-logloss:0.63225
    [1882]	train-logloss:0.63286
    [1883]	train-logloss:0.63271
    [1884]	train-logloss:0.63270
    [1885]	train-logloss:0.63268
    [1886]	train-logloss:0.63268
    [1887]	train-logloss:0.63276
    [1888]	train-logloss:0.63250
    [1889]	train-logloss:0.63276
    [1890]	train-logloss:0.63270
    [1891]	train-logloss:0.63247
    [1892]	train-logloss:0.63222
    [1893]	train-logloss:0.63252
    [1894]	train-logloss:0.63280
    [1895]	train-logloss:0.63284
    [1896]	train-logloss:0.63253
    [1897]	train-logloss:0.63241
    [1898]	train-logloss:0.63218
    [1899]	train-logloss:0.63219
    [1900]	train-logloss:0.63192
    [1901]	train-logloss:0.63223
    [1902]	train-logloss:0.63201
    [1903]	train-logloss:0.63173
    [1904]	train-logloss:0.63202
    [1905]	train-logloss:0.63222
    [1906]	train-logloss:0.63181
    [1907]	train-logloss:0.63178
    [1908]	train-logloss:0.63213
    [1909]	train-logloss:0.63178
    [1910]	train-logloss:0.63225
    [1911]	train-logloss:0.63274
    [1912]	train-logloss:0.63294
    [1913]	train-logloss:0.63338
    [1914]	train-logloss:0.63338
    [1915]	train-logloss:0.63338
    [1916]	train-logloss:0.63341
    [1917]	train-logloss:0.63340
    [1918]	train-logloss:0.63349
    [1919]	train-logloss:0.63310
    [1920]	train-logloss:0.63315
    [1921]	train-logloss:0.63328
    [1922]	train-logloss:0.63319
    [1923]	train-logloss:0.63287
    [1924]	train-logloss:0.63251
    [1925]	train-logloss:0.63272
    [1926]	train-logloss:0.63240
    [1927]	train-logloss:0.63280
    [1928]	train-logloss:0.63241
    [1929]	train-logloss:0.63241
    [1930]	train-logloss:0.63241
    [1931]	train-logloss:0.63229
    [1932]	train-logloss:0.63205
    [1933]	train-logloss:0.63170
    [1934]	train-logloss:0.63269
    [1935]	train-logloss:0.63312
    [1936]	train-logloss:0.63253
    [1937]	train-logloss:0.63222
    [1938]	train-logloss:0.63223
    [1939]	train-logloss:0.63224
    [1940]	train-logloss:0.63252
    [1941]	train-logloss:0.63260
    [1942]	train-logloss:0.63329
    [1943]	train-logloss:0.63331
    [1944]	train-logloss:0.63432
    [1945]	train-logloss:0.63457
    [1946]	train-logloss:0.63454
    [1947]	train-logloss:0.63421
    [1948]	train-logloss:0.63418
    [1949]	train-logloss:0.63412
    [1950]	train-logloss:0.63373
    [1951]	train-logloss:0.63307
    [1952]	train-logloss:0.63306
    [1953]	train-logloss:0.63307
    [1954]	train-logloss:0.63296
    [1955]	train-logloss:0.63289
    [1956]	train-logloss:0.63286
    [1957]	train-logloss:0.63286
    [1958]	train-logloss:0.63286
    [1959]	train-logloss:0.63268
    [1960]	train-logloss:0.63289
    [1961]	train-logloss:0.63299
    [1962]	train-logloss:0.63288
    [1963]	train-logloss:0.63288
    [1964]	train-logloss:0.63280
    [1965]	train-logloss:0.63254
    [1966]	train-logloss:0.63272
    [1967]	train-logloss:0.63287
    [1968]	train-logloss:0.63327
    [1969]	train-logloss:0.63324
    [1970]	train-logloss:0.63324
    [1971]	train-logloss:0.63336
    [1972]	train-logloss:0.63382
    [1973]	train-logloss:0.63386
    [1974]	train-logloss:0.63427
    [1975]	train-logloss:0.63428
    [1976]	train-logloss:0.63462
    [1977]	train-logloss:0.63443
    [1978]	train-logloss:0.63445
    [1979]	train-logloss:0.63453
    [1980]	train-logloss:0.63466
    [1981]	train-logloss:0.63527
    [1982]	train-logloss:0.63546
    [1983]	train-logloss:0.63513
    [1984]	train-logloss:0.63484
    [1985]	train-logloss:0.63482
    [1986]	train-logloss:0.63484
    [1987]	train-logloss:0.63513
    [1988]	train-logloss:0.63536
    [1989]	train-logloss:0.63516
    [1990]	train-logloss:0.63468
    [1991]	train-logloss:0.63452
    [1992]	train-logloss:0.63448
    [1993]	train-logloss:0.63460
    [1994]	train-logloss:0.63451
    [1995]	train-logloss:0.63422
    [1996]	train-logloss:0.63409
    [1997]	train-logloss:0.63412
    [1998]	train-logloss:0.63406
    [1999]	train-logloss:0.63402
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676
    • 677
    • 678
    • 679
    • 680
    • 681
    • 682
    • 683
    • 684
    • 685
    • 686
    • 687
    • 688
    • 689
    • 690
    • 691
    • 692
    • 693
    • 694
    • 695
    • 696
    • 697
    • 698
    • 699
    • 700
    • 701
    • 702
    • 703
    • 704
    • 705
    • 706
    • 707
    • 708
    • 709
    • 710
    • 711
    • 712
    • 713
    • 714
    • 715
    • 716
    • 717
    • 718
    • 719
    • 720
    • 721
    • 722
    • 723
    • 724
    • 725
    • 726
    • 727
    • 728
    • 729
    • 730
    • 731
    • 732
    • 733
    • 734
    • 735
    • 736
    • 737
    • 738
    • 739
    • 740
    • 741
    • 742
    • 743
    • 744
    • 745
    • 746
    • 747
    • 748
    • 749
    • 750
    • 751
    • 752
    • 753
    • 754
    • 755
    • 756
    • 757
    • 758
    • 759
    • 760
    • 761
    • 762
    • 763
    • 764
    • 765
    • 766
    • 767
    • 768
    • 769
    • 770
    • 771
    • 772
    • 773
    • 774
    • 775
    • 776
    • 777
    • 778
    • 779
    • 780
    • 781
    • 782
    • 783
    • 784
    • 785
    • 786
    • 787
    • 788
    • 789
    • 790
    • 791
    • 792
    • 793
    • 794
    • 795
    • 796
    • 797
    • 798
    • 799
    • 800
    • 801
    • 802
    • 803
    • 804
    • 805
    • 806
    • 807
    • 808
    • 809
    • 810
    • 811
    • 812
    • 813
    • 814
    • 815
    • 816
    • 817
    • 818
    • 819
    • 820
    • 821
    • 822
    • 823
    • 824
    • 825
    • 826
    • 827
    • 828
    • 829
    • 830
    • 831
    • 832
    • 833
    • 834
    • 835
    • 836
    • 837
    • 838
    • 839
    • 840
    • 841
    • 842
    • 843
    • 844
    • 845
    • 846
    • 847
    • 848
    • 849
    • 850
    • 851
    • 852
    • 853
    • 854
    • 855
    • 856
    • 857
    • 858
    • 859
    • 860
    • 861
    • 862
    • 863
    • 864
    • 865
    • 866
    • 867
    • 868
    • 869
    • 870
    • 871
    • 872
    • 873
    • 874
    • 875
    • 876
    • 877
    • 878
    • 879
    • 880
    • 881
    • 882
    • 883
    • 884
    • 885
    • 886
    • 887
    • 888
    • 889
    • 890
    • 891
    • 892
    • 893
    • 894
    • 895
    • 896
    • 897
    • 898
    • 899
    • 900
    • 901
    • 902
    • 903
    • 904
    • 905
    • 906
    • 907
    • 908
    • 909
    • 910
    • 911
    • 912
    • 913
    • 914
    • 915
    • 916
    • 917
    • 918
    • 919
    • 920
    • 921
    • 922
    • 923
    • 924
    • 925
    • 926
    • 927
    • 928
    • 929
    • 930
    • 931
    • 932
    • 933
    • 934
    • 935
    • 936
    • 937
    • 938
    • 939
    • 940
    • 941
    • 942
    • 943
    • 944
    • 945
    • 946
    • 947
    • 948
    • 949
    • 950
    • 951
    • 952
    • 953
    • 954
    • 955
    • 956
    • 957
    • 958
    • 959
    • 960
    • 961
    • 962
    • 963
    • 964
    • 965
    • 966
    • 967
    • 968
    • 969
    • 970
    • 971
    • 972
    • 973
    • 974
    • 975
    • 976
    • 977
    • 978
    • 979
    • 980
    • 981
    • 982
    • 983
    • 984
    • 985
    • 986
    • 987
    • 988
    • 989
    • 990
    • 991
    • 992
    • 993
    • 994
    • 995
    • 996
    • 997
    • 998
    • 999
    • 1000
    • 1001
    • 1002
    • 1003
    • 1004
    • 1005
    • 1006
    • 1007
    • 1008
    • 1009
    • 1010
    • 1011
    • 1012
    • 1013
    • 1014
    • 1015
    • 1016
    • 1017
    • 1018
    • 1019
    • 1020
    • 1021
    • 1022
    • 1023
    • 1024
    • 1025
    • 1026
    • 1027
    • 1028
    • 1029
    • 1030
    • 1031
    • 1032
    • 1033
    • 1034
    • 1035
    • 1036
    • 1037
    • 1038
    • 1039
    • 1040
    • 1041
    • 1042
    • 1043
    • 1044
    • 1045
    • 1046
    • 1047
    • 1048
    • 1049
    • 1050
    • 1051
    • 1052
    • 1053
    • 1054
    • 1055
    • 1056
    • 1057
    • 1058
    • 1059
    • 1060
    • 1061
    • 1062
    • 1063
    • 1064
    • 1065
    • 1066
    • 1067
    • 1068
    • 1069
    • 1070
    • 1071
    • 1072
    • 1073
    • 1074
    • 1075
    • 1076
    • 1077
    • 1078
    • 1079
    • 1080
    • 1081
    • 1082
    • 1083
    • 1084
    • 1085
    • 1086
    • 1087
    • 1088
    • 1089
    • 1090
    • 1091
    • 1092
    • 1093
    • 1094
    • 1095
    • 1096
    • 1097
    • 1098
    • 1099
    • 1100
    • 1101
    • 1102
    • 1103
    • 1104
    • 1105
    • 1106
    • 1107
    • 1108
    • 1109
    • 1110
    • 1111
    • 1112
    • 1113
    • 1114
    • 1115
    • 1116
    • 1117
    • 1118
    • 1119
    • 1120
    • 1121
    • 1122
    • 1123
    • 1124
    • 1125
    • 1126
    • 1127
    • 1128
    • 1129
    • 1130
    • 1131
    • 1132
    • 1133
    • 1134
    • 1135
    • 1136
    • 1137
    • 1138
    • 1139
    • 1140
    • 1141
    • 1142
    • 1143
    • 1144
    • 1145
    • 1146
    • 1147
    • 1148
    • 1149
    • 1150
    • 1151
    • 1152
    • 1153
    • 1154
    • 1155
    • 1156
    • 1157
    • 1158
    • 1159
    • 1160
    • 1161
    • 1162
    • 1163
    • 1164
    • 1165
    • 1166
    • 1167
    • 1168
    • 1169
    • 1170
    • 1171
    • 1172
    • 1173
    • 1174
    • 1175
    • 1176
    • 1177
    • 1178
    • 1179
    • 1180
    • 1181
    • 1182
    • 1183
    • 1184
    • 1185
    • 1186
    • 1187
    • 1188
    • 1189
    • 1190
    • 1191
    • 1192
    • 1193
    • 1194
    • 1195
    • 1196
    • 1197
    • 1198
    • 1199
    • 1200
    • 1201
    • 1202
    • 1203
    • 1204
    • 1205
    • 1206
    • 1207
    • 1208
    • 1209
    • 1210
    • 1211
    • 1212
    • 1213
    • 1214
    • 1215
    • 1216
    • 1217
    • 1218
    • 1219
    • 1220
    • 1221
    • 1222
    • 1223
    • 1224
    • 1225
    • 1226
    • 1227
    • 1228
    • 1229
    • 1230
    • 1231
    • 1232
    • 1233
    • 1234
    • 1235
    • 1236
    • 1237
    • 1238
    • 1239
    • 1240
    • 1241
    • 1242
    • 1243
    • 1244
    • 1245
    • 1246
    • 1247
    • 1248
    • 1249
    • 1250
    • 1251
    • 1252
    • 1253
    • 1254
    • 1255
    • 1256
    • 1257
    • 1258
    • 1259
    • 1260
    • 1261
    • 1262
    • 1263
    • 1264
    • 1265
    • 1266
    • 1267
    • 1268
    • 1269
    • 1270
    • 1271
    • 1272
    • 1273
    • 1274
    • 1275
    • 1276
    • 1277
    • 1278
    • 1279
    • 1280
    • 1281
    • 1282
    • 1283
    • 1284
    • 1285
    • 1286
    • 1287
    • 1288
    • 1289
    • 1290
    • 1291
    • 1292
    • 1293
    • 1294
    • 1295
    • 1296
    • 1297
    • 1298
    • 1299
    • 1300
    • 1301
    • 1302
    • 1303
    • 1304
    • 1305
    • 1306
    • 1307
    • 1308
    • 1309
    • 1310
    • 1311
    • 1312
    • 1313
    • 1314
    • 1315
    • 1316
    • 1317
    • 1318
    • 1319
    • 1320
    • 1321
    • 1322
    • 1323
    • 1324
    • 1325
    • 1326
    • 1327
    • 1328
    • 1329
    • 1330
    • 1331
    • 1332
    • 1333
    • 1334
    • 1335
    • 1336
    • 1337
    • 1338
    • 1339
    • 1340
    • 1341
    • 1342
    • 1343
    • 1344
    • 1345
    • 1346
    • 1347
    • 1348
    • 1349
    • 1350
    • 1351
    • 1352
    • 1353
    • 1354
    • 1355
    • 1356
    • 1357
    • 1358
    • 1359
    • 1360
    • 1361
    • 1362
    • 1363
    • 1364
    • 1365
    • 1366
    • 1367
    • 1368
    • 1369
    • 1370
    • 1371
    • 1372
    • 1373
    • 1374
    • 1375
    • 1376
    • 1377
    • 1378
    • 1379
    • 1380
    • 1381
    • 1382
    • 1383
    • 1384
    • 1385
    • 1386
    • 1387
    • 1388
    • 1389
    • 1390
    • 1391
    • 1392
    • 1393
    • 1394
    • 1395
    • 1396
    • 1397
    • 1398
    • 1399
    • 1400
    • 1401
    • 1402
    • 1403
    • 1404
    • 1405
    • 1406
    • 1407
    • 1408
    • 1409
    • 1410
    • 1411
    • 1412
    • 1413
    • 1414
    • 1415
    • 1416
    • 1417
    • 1418
    • 1419
    • 1420
    • 1421
    • 1422
    • 1423
    • 1424
    • 1425
    • 1426
    • 1427
    • 1428
    • 1429
    • 1430
    • 1431
    • 1432
    • 1433
    • 1434
    • 1435
    • 1436
    • 1437
    • 1438
    • 1439
    • 1440
    • 1441
    • 1442
    • 1443
    • 1444
    • 1445
    • 1446
    • 1447
    • 1448
    • 1449
    • 1450
    • 1451
    • 1452
    • 1453
    • 1454
    • 1455
    • 1456
    • 1457
    • 1458
    • 1459
    • 1460
    • 1461
    • 1462
    • 1463
    • 1464
    • 1465
    • 1466
    • 1467
    • 1468
    • 1469
    • 1470
    • 1471
    • 1472
    • 1473
    • 1474
    • 1475
    • 1476
    • 1477
    • 1478
    • 1479
    • 1480
    • 1481
    • 1482
    • 1483
    • 1484
    • 1485
    • 1486
    • 1487
    • 1488
    • 1489
    • 1490
    • 1491
    • 1492
    • 1493
    • 1494
    • 1495
    • 1496
    • 1497
    • 1498
    • 1499
    • 1500
    • 1501
    • 1502
    • 1503
    • 1504
    • 1505
    • 1506
    • 1507
    • 1508
    • 1509
    • 1510
    • 1511
    • 1512
    • 1513
    • 1514
    • 1515
    • 1516
    • 1517
    • 1518
    • 1519
    • 1520
    • 1521
    • 1522
    • 1523
    • 1524
    • 1525
    • 1526
    • 1527
    • 1528
    • 1529
    • 1530
    • 1531
    • 1532
    • 1533
    • 1534
    • 1535
    • 1536
    • 1537
    • 1538
    • 1539
    • 1540
    • 1541
    • 1542
    • 1543
    • 1544
    • 1545
    • 1546
    • 1547
    • 1548
    • 1549
    • 1550
    • 1551
    • 1552
    • 1553
    • 1554
    • 1555
    • 1556
    • 1557
    • 1558
    • 1559
    • 1560
    • 1561
    • 1562
    • 1563
    • 1564
    • 1565
    • 1566
    • 1567
    • 1568
    • 1569
    • 1570
    • 1571
    • 1572
    • 1573
    • 1574
    • 1575
    • 1576
    • 1577
    • 1578
    • 1579
    • 1580
    • 1581
    • 1582
    • 1583
    • 1584
    • 1585
    • 1586
    • 1587
    • 1588
    • 1589
    • 1590
    • 1591
    • 1592
    • 1593
    • 1594
    • 1595
    • 1596
    • 1597
    • 1598
    • 1599
    • 1600
    • 1601
    • 1602
    • 1603
    • 1604
    • 1605
    • 1606
    • 1607
    • 1608
    • 1609
    • 1610
    • 1611
    • 1612
    • 1613
    • 1614
    • 1615
    • 1616
    • 1617
    • 1618
    • 1619
    • 1620
    • 1621
    • 1622
    • 1623
    • 1624
    • 1625
    • 1626
    • 1627
    • 1628
    • 1629
    • 1630
    • 1631
    • 1632
    • 1633
    • 1634
    • 1635
    • 1636
    • 1637
    • 1638
    • 1639
    • 1640
    • 1641
    • 1642
    • 1643
    • 1644
    • 1645
    • 1646
    • 1647
    • 1648
    • 1649
    • 1650
    • 1651
    • 1652
    • 1653
    • 1654
    • 1655
    • 1656
    • 1657
    • 1658
    • 1659
    • 1660
    • 1661
    • 1662
    • 1663
    • 1664
    • 1665
    • 1666
    • 1667
    • 1668
    • 1669
    • 1670
    • 1671
    • 1672
    • 1673
    • 1674
    • 1675
    • 1676
    • 1677
    • 1678
    • 1679
    • 1680
    • 1681
    • 1682
    • 1683
    • 1684
    • 1685
    • 1686
    • 1687
    • 1688
    • 1689
    • 1690
    • 1691
    • 1692
    • 1693
    • 1694
    • 1695
    • 1696
    • 1697
    • 1698
    • 1699
    • 1700
    • 1701
    • 1702
    • 1703
    • 1704
    • 1705
    • 1706
    • 1707
    • 1708
    • 1709
    • 1710
    • 1711
    • 1712
    • 1713
    • 1714
    • 1715
    • 1716
    • 1717
    • 1718
    • 1719
    • 1720
    • 1721
    • 1722
    • 1723
    • 1724
    • 1725
    • 1726
    • 1727
    • 1728
    • 1729
    • 1730
    • 1731
    • 1732
    • 1733
    • 1734
    • 1735
    • 1736
    • 1737
    • 1738
    • 1739
    • 1740
    • 1741
    • 1742
    • 1743
    • 1744
    • 1745
    • 1746
    • 1747
    • 1748
    • 1749
    • 1750
    • 1751
    • 1752
    • 1753
    • 1754
    • 1755
    • 1756
    • 1757
    • 1758
    • 1759
    • 1760
    • 1761
    • 1762
    • 1763
    • 1764
    • 1765
    • 1766
    • 1767
    • 1768
    • 1769
    • 1770
    • 1771
    • 1772
    • 1773
    • 1774
    • 1775
    • 1776
    • 1777
    • 1778
    • 1779
    • 1780
    • 1781
    • 1782
    • 1783
    • 1784
    • 1785
    • 1786
    • 1787
    • 1788
    • 1789
    • 1790
    • 1791
    • 1792
    • 1793
    • 1794
    • 1795
    • 1796
    • 1797
    • 1798
    • 1799
    • 1800
    • 1801
    • 1802
    • 1803
    • 1804
    • 1805
    • 1806
    • 1807
    • 1808
    • 1809
    • 1810
    • 1811
    • 1812
    • 1813
    • 1814
    • 1815
    • 1816
    • 1817
    • 1818
    • 1819
    • 1820
    • 1821
    • 1822
    • 1823
    • 1824
    • 1825
    • 1826
    • 1827
    • 1828
    • 1829
    • 1830
    • 1831
    • 1832
    • 1833
    • 1834
    • 1835
    • 1836
    • 1837
    • 1838
    • 1839
    • 1840
    • 1841
    • 1842
    • 1843
    • 1844
    • 1845
    • 1846
    • 1847
    • 1848
    • 1849
    • 1850
    • 1851
    • 1852
    • 1853
    • 1854
    • 1855
    • 1856
    • 1857
    • 1858
    • 1859
    • 1860
    • 1861
    • 1862
    • 1863
    • 1864
    • 1865
    • 1866
    • 1867
    • 1868
    • 1869
    • 1870
    • 1871
    • 1872
    • 1873
    • 1874
    • 1875
    • 1876
    • 1877
    • 1878
    • 1879
    • 1880
    • 1881
    • 1882
    • 1883
    • 1884
    • 1885
    • 1886
    • 1887
    • 1888
    • 1889
    • 1890
    • 1891
    • 1892
    • 1893
    • 1894
    • 1895
    • 1896
    • 1897
    • 1898
    • 1899
    • 1900
    • 1901
    • 1902
    • 1903
    • 1904
    • 1905
    • 1906
    • 1907
    • 1908
    • 1909
    • 1910
    • 1911
    • 1912
    • 1913
    • 1914
    • 1915
    • 1916
    • 1917
    • 1918
    • 1919
    • 1920
    • 1921
    • 1922
    • 1923
    • 1924
    • 1925
    • 1926
    • 1927
    • 1928
    • 1929
    • 1930
    • 1931
    • 1932
    • 1933
    • 1934
    • 1935
    • 1936
    • 1937
    • 1938
    • 1939
    • 1940
    • 1941
    • 1942
    • 1943
    • 1944
    • 1945
    • 1946
    • 1947
    • 1948
    • 1949
    • 1950
    • 1951
    • 1952
    • 1953
    • 1954
    • 1955
    • 1956
    • 1957
    • 1958
    • 1959
    • 1960
    • 1961
    • 1962
    • 1963
    • 1964
    • 1965
    • 1966
    • 1967
    • 1968
    • 1969
    • 1970
    • 1971
    • 1972
    • 1973
    • 1974
    • 1975
    • 1976
    • 1977
    • 1978
    • 1979
    • 1980
    • 1981
    • 1982
    • 1983
    • 1984
    • 1985
    • 1986
    • 1987
    • 1988
    • 1989
    • 1990
    • 1991
    • 1992
    • 1993
    • 1994
    • 1995
    • 1996
    • 1997
    • 1998
    • 1999
    • 2000
    • 2001
    • 2002
    • 2003
    • 2004
    • 2005
    • 2006
    • 2007
    • 2008

    step-04 用模型预测

    ytrain=model.predict(dtrain)
    
    • 1

    注意:

    • 这里model.predict()预测得到的是概率值,而不是0或者1的结果
    • 下面将结果转换为0或者1
    ytrain_class = (ytrain>= 0.5)*1
    
    • 1
    ytest=model.predict(dtest)
    y_pred = (ytest >= 0.5)*1
    
    • 1
    • 2

    step-05 评价模型效果

    print(‘train_roc_auc_score:’,metrics.roc_auc_score(y_train,ytrain))
    print(‘test_roc_auc_score:’,metrics.roc_auc_score(y_test, ytest))
    print(‘train_accuracy_score:’,metrics.accuracy_score(y_train, ytrain_class))
    print(‘test_accuracy_score:’,metrics.accuracy_score(y_test,y_pred ))

    step-06 保存模型并调用

    joblib.dump(model , r'D:\Ensemble_Learning\xgboostinfo\xgboost01.model')
    load_model=joblib.load(r'D:\Ensemble_Learning\xgboostinfo\xgboost01.model')
    ytest=load_model.predict(dtest)
    ytest[0:5]
    
    • 1
    • 2
    • 3
    • 4
    array([0.265046  , 0.39359182, 0.82298654, 0.07664716, 0.28468448],
          dtype=float32)
    
    • 1
    • 2

    三. 网格搜索最优xgboost参数

    1.step-01 配置参数列表

    from sklearn.model_selection import GridSearchCV
    ## 定义参数取值范围
    learning_rate = [0.1] #0.15,0.11
    subsample = [ 0.65] #0.7,0.8
    colsample_bytree = [0.6] #0.7, 0.5
    colsample_bylevel=[0.7] #0.8,
    colsample_bynode=[0.7] #0.8,
    max_depth = [6] #,7
    n_estimators=[1000] #,900
    gamma=[0,0.1]
    reg_alpha=[1,2]
    reg_lambda=[2,3]
    min_child_weight=[30,50]
    max_bin=[12,16]
    base_score=[0.4,0.5,0.6]
    
    parameters = { 
                  'learning_rate': learning_rate,
                  'subsample': subsample,
                  'colsample_bytree':colsample_bytree,
                  'colsample_bylevel':colsample_bylevel,
                  'colsample_bynode':colsample_bynode,
                  'max_depth': max_depth,
                  'n_estimators':n_estimators,
                   'gamma':gamma,
                   'reg_alpha':reg_alpha,
                   'reg_lambda':reg_lambda,
                   'min_child_weight':min_child_weight,
                   'max_bin':max_bin,
                   'base_score':base_score,
                  }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    step-02 选择待优化模型

    model = XGBClassifier( eval_metric="logloss")
    
    • 1

    step-03 进行网格搜索 拟合模型

    clf = GridSearchCV(model, parameters, cv=2, scoring='accuracy',verbose=1,n_jobs=-1)
    clf = clf.fit(train.values, y_train.values,eval_set=eval_set)
    
    • 1
    • 2
    Fitting 2 folds for each of 96 candidates, totalling 192 fits
    [0]	validation_0-logloss:0.68822
    [1]	validation_0-logloss:0.68488
    [2]	validation_0-logloss:0.67979
    [3]	validation_0-logloss:0.67770
    [4]	validation_0-logloss:0.67431
    [5]	validation_0-logloss:0.67095
    [6]	validation_0-logloss:0.66894
    [7]	validation_0-logloss:0.66736
    [8]	validation_0-logloss:0.66269
    [9]	validation_0-logloss:0.65911
    [10]	validation_0-logloss:0.65691
    [11]	validation_0-logloss:0.65429
    [12]	validation_0-logloss:0.64994
    [13]	validation_0-logloss:0.64843
    [14]	validation_0-logloss:0.64748
    [15]	validation_0-logloss:0.64628
    [16]	validation_0-logloss:0.64424
    [17]	validation_0-logloss:0.64260
    [18]	validation_0-logloss:0.64172
    [19]	validation_0-logloss:0.64020
    [20]	validation_0-logloss:0.63933
    [21]	validation_0-logloss:0.63795
    [22]	validation_0-logloss:0.63296
    [23]	validation_0-logloss:0.63192
    [24]	validation_0-logloss:0.63157
    [25]	validation_0-logloss:0.63006
    [26]	validation_0-logloss:0.62925
    [27]	validation_0-logloss:0.62915
    [28]	validation_0-logloss:0.62914
    [29]	validation_0-logloss:0.62940
    [30]	validation_0-logloss:0.62872
    [31]	validation_0-logloss:0.62866
    [32]	validation_0-logloss:0.62860
    [33]	validation_0-logloss:0.62812
    [34]	validation_0-logloss:0.62823
    [35]	validation_0-logloss:0.62819
    [36]	validation_0-logloss:0.62489
    [37]	validation_0-logloss:0.62490
    [38]	validation_0-logloss:0.62293
    [39]	validation_0-logloss:0.62222
    [40]	validation_0-logloss:0.62102
    [41]	validation_0-logloss:0.61937
    [42]	validation_0-logloss:0.61839
    [43]	validation_0-logloss:0.61829
    [44]	validation_0-logloss:0.61782
    [45]	validation_0-logloss:0.61781
    [46]	validation_0-logloss:0.61763
    [47]	validation_0-logloss:0.61733
    [48]	validation_0-logloss:0.61704
    [49]	validation_0-logloss:0.61602
    [50]	validation_0-logloss:0.61585
    [51]	validation_0-logloss:0.61632
    [52]	validation_0-logloss:0.61601
    [53]	validation_0-logloss:0.61658
    [54]	validation_0-logloss:0.61598
    [55]	validation_0-logloss:0.61581
    [56]	validation_0-logloss:0.61530
    [57]	validation_0-logloss:0.61455
    [58]	validation_0-logloss:0.61557
    [59]	validation_0-logloss:0.61533
    [60]	validation_0-logloss:0.61390
    [61]	validation_0-logloss:0.61426
    [62]	validation_0-logloss:0.61365
    [63]	validation_0-logloss:0.61269
    [64]	validation_0-logloss:0.61244
    [65]	validation_0-logloss:0.61196
    [66]	validation_0-logloss:0.61196
    [67]	validation_0-logloss:0.61175
    [68]	validation_0-logloss:0.61179
    [69]	validation_0-logloss:0.61195
    [70]	validation_0-logloss:0.61165
    [71]	validation_0-logloss:0.61130
    [72]	validation_0-logloss:0.61112
    [73]	validation_0-logloss:0.61133
    [74]	validation_0-logloss:0.61152
    [75]	validation_0-logloss:0.61118
    [76]	validation_0-logloss:0.61160
    [77]	validation_0-logloss:0.61167
    [78]	validation_0-logloss:0.61175
    [79]	validation_0-logloss:0.61156
    [80]	validation_0-logloss:0.61164
    [81]	validation_0-logloss:0.61126
    [82]	validation_0-logloss:0.61166
    [83]	validation_0-logloss:0.61163
    [84]	validation_0-logloss:0.61156
    [85]	validation_0-logloss:0.61177
    [86]	validation_0-logloss:0.61271
    [87]	validation_0-logloss:0.61074
    [88]	validation_0-logloss:0.61048
    [89]	validation_0-logloss:0.60983
    [90]	validation_0-logloss:0.60992
    [91]	validation_0-logloss:0.60904
    [92]	validation_0-logloss:0.60858
    [93]	validation_0-logloss:0.60805
    [94]	validation_0-logloss:0.60787
    [95]	validation_0-logloss:0.60836
    [96]	validation_0-logloss:0.60857
    [97]	validation_0-logloss:0.60862
    [98]	validation_0-logloss:0.60874
    [99]	validation_0-logloss:0.60815
    [100]	validation_0-logloss:0.60815
    [101]	validation_0-logloss:0.60762
    [102]	validation_0-logloss:0.60721
    [103]	validation_0-logloss:0.60722
    [104]	validation_0-logloss:0.60713
    [105]	validation_0-logloss:0.60712
    [106]	validation_0-logloss:0.60659
    [107]	validation_0-logloss:0.60623
    [108]	validation_0-logloss:0.60603
    [109]	validation_0-logloss:0.60549
    [110]	validation_0-logloss:0.60546
    [111]	validation_0-logloss:0.60535
    [112]	validation_0-logloss:0.60451
    [113]	validation_0-logloss:0.60451
    [114]	validation_0-logloss:0.60397
    [115]	validation_0-logloss:0.60426
    [116]	validation_0-logloss:0.60452
    [117]	validation_0-logloss:0.60424
    [118]	validation_0-logloss:0.60428
    [119]	validation_0-logloss:0.60379
    [120]	validation_0-logloss:0.60408
    [121]	validation_0-logloss:0.60420
    [122]	validation_0-logloss:0.60399
    [123]	validation_0-logloss:0.60389
    [124]	validation_0-logloss:0.60441
    [125]	validation_0-logloss:0.60494
    [126]	validation_0-logloss:0.60457
    [127]	validation_0-logloss:0.60444
    [128]	validation_0-logloss:0.60442
    [129]	validation_0-logloss:0.60438
    [130]	validation_0-logloss:0.60436
    [131]	validation_0-logloss:0.60378
    [132]	validation_0-logloss:0.60310
    [133]	validation_0-logloss:0.60328
    [134]	validation_0-logloss:0.60349
    [135]	validation_0-logloss:0.60336
    [136]	validation_0-logloss:0.60355
    [137]	validation_0-logloss:0.60356
    [138]	validation_0-logloss:0.60385
    [139]	validation_0-logloss:0.60383
    [140]	validation_0-logloss:0.60363
    [141]	validation_0-logloss:0.60288
    [142]	validation_0-logloss:0.60319
    [143]	validation_0-logloss:0.60344
    [144]	validation_0-logloss:0.60350
    [145]	validation_0-logloss:0.60393
    [146]	validation_0-logloss:0.60399
    [147]	validation_0-logloss:0.60408
    [148]	validation_0-logloss:0.60428
    [149]	validation_0-logloss:0.60439
    [150]	validation_0-logloss:0.60444
    [151]	validation_0-logloss:0.60460
    [152]	validation_0-logloss:0.60519
    [153]	validation_0-logloss:0.60553
    [154]	validation_0-logloss:0.60516
    [155]	validation_0-logloss:0.60552
    [156]	validation_0-logloss:0.60554
    [157]	validation_0-logloss:0.60521
    [158]	validation_0-logloss:0.60540
    [159]	validation_0-logloss:0.60549
    [160]	validation_0-logloss:0.60561
    [161]	validation_0-logloss:0.60576
    [162]	validation_0-logloss:0.60609
    [163]	validation_0-logloss:0.60591
    [164]	validation_0-logloss:0.60582
    [165]	validation_0-logloss:0.60576
    [166]	validation_0-logloss:0.60607
    [167]	validation_0-logloss:0.60569
    [168]	validation_0-logloss:0.60565
    [169]	validation_0-logloss:0.60612
    [170]	validation_0-logloss:0.60641
    [171]	validation_0-logloss:0.60640
    [172]	validation_0-logloss:0.60609
    [173]	validation_0-logloss:0.60584
    [174]	validation_0-logloss:0.60604
    [175]	validation_0-logloss:0.60608
    [176]	validation_0-logloss:0.60609
    [177]	validation_0-logloss:0.60606
    [178]	validation_0-logloss:0.60660
    [179]	validation_0-logloss:0.60601
    [180]	validation_0-logloss:0.60543
    [181]	validation_0-logloss:0.60482
    [182]	validation_0-logloss:0.60460
    [183]	validation_0-logloss:0.60465
    [184]	validation_0-logloss:0.60453
    [185]	validation_0-logloss:0.60450
    [186]	validation_0-logloss:0.60447
    [187]	validation_0-logloss:0.60442
    [188]	validation_0-logloss:0.60432
    [189]	validation_0-logloss:0.60451
    [190]	validation_0-logloss:0.60469
    [191]	validation_0-logloss:0.60473
    [192]	validation_0-logloss:0.60455
    [193]	validation_0-logloss:0.60426
    [194]	validation_0-logloss:0.60474
    [195]	validation_0-logloss:0.60463
    [196]	validation_0-logloss:0.60473
    [197]	validation_0-logloss:0.60477
    [198]	validation_0-logloss:0.60532
    [199]	validation_0-logloss:0.60515
    [200]	validation_0-logloss:0.60518
    [201]	validation_0-logloss:0.60515
    [202]	validation_0-logloss:0.60500
    [203]	validation_0-logloss:0.60524
    [204]	validation_0-logloss:0.60522
    [205]	validation_0-logloss:0.60516
    [206]	validation_0-logloss:0.60473
    [207]	validation_0-logloss:0.60459
    [208]	validation_0-logloss:0.60468
    [209]	validation_0-logloss:0.60497
    [210]	validation_0-logloss:0.60538
    [211]	validation_0-logloss:0.60584
    [212]	validation_0-logloss:0.60534
    [213]	validation_0-logloss:0.60530
    [214]	validation_0-logloss:0.60557
    [215]	validation_0-logloss:0.60565
    [216]	validation_0-logloss:0.60610
    [217]	validation_0-logloss:0.60636
    [218]	validation_0-logloss:0.60650
    [219]	validation_0-logloss:0.60661
    [220]	validation_0-logloss:0.60655
    [221]	validation_0-logloss:0.60701
    [222]	validation_0-logloss:0.60714
    [223]	validation_0-logloss:0.60700
    [224]	validation_0-logloss:0.60750
    [225]	validation_0-logloss:0.60757
    [226]	validation_0-logloss:0.60762
    [227]	validation_0-logloss:0.60722
    [228]	validation_0-logloss:0.60706
    [229]	validation_0-logloss:0.60686
    [230]	validation_0-logloss:0.60654
    [231]	validation_0-logloss:0.60657
    [232]	validation_0-logloss:0.60676
    [233]	validation_0-logloss:0.60664
    [234]	validation_0-logloss:0.60668
    [235]	validation_0-logloss:0.60694
    [236]	validation_0-logloss:0.60680
    [237]	validation_0-logloss:0.60677
    [238]	validation_0-logloss:0.60649
    [239]	validation_0-logloss:0.60630
    [240]	validation_0-logloss:0.60609
    [241]	validation_0-logloss:0.60574
    [242]	validation_0-logloss:0.60603
    [243]	validation_0-logloss:0.60609
    [244]	validation_0-logloss:0.60588
    [245]	validation_0-logloss:0.60599
    [246]	validation_0-logloss:0.60576
    [247]	validation_0-logloss:0.60621
    [248]	validation_0-logloss:0.60669
    [249]	validation_0-logloss:0.60657
    [250]	validation_0-logloss:0.60696
    [251]	validation_0-logloss:0.60693
    [252]	validation_0-logloss:0.60653
    [253]	validation_0-logloss:0.60678
    [254]	validation_0-logloss:0.60658
    [255]	validation_0-logloss:0.60608
    [256]	validation_0-logloss:0.60590
    [257]	validation_0-logloss:0.60587
    [258]	validation_0-logloss:0.60539
    [259]	validation_0-logloss:0.60528
    [260]	validation_0-logloss:0.60510
    [261]	validation_0-logloss:0.60560
    [262]	validation_0-logloss:0.60583
    [263]	validation_0-logloss:0.60592
    [264]	validation_0-logloss:0.60591
    [265]	validation_0-logloss:0.60541
    [266]	validation_0-logloss:0.60535
    [267]	validation_0-logloss:0.60566
    [268]	validation_0-logloss:0.60543
    [269]	validation_0-logloss:0.60562
    [270]	validation_0-logloss:0.60554
    [271]	validation_0-logloss:0.60535
    [272]	validation_0-logloss:0.60563
    [273]	validation_0-logloss:0.60566
    [274]	validation_0-logloss:0.60529
    [275]	validation_0-logloss:0.60534
    [276]	validation_0-logloss:0.60551
    [277]	validation_0-logloss:0.60549
    [278]	validation_0-logloss:0.60546
    [279]	validation_0-logloss:0.60526
    [280]	validation_0-logloss:0.60515
    [281]	validation_0-logloss:0.60527
    [282]	validation_0-logloss:0.60511
    [283]	validation_0-logloss:0.60428
    [284]	validation_0-logloss:0.60414
    [285]	validation_0-logloss:0.60400
    [286]	validation_0-logloss:0.60428
    [287]	validation_0-logloss:0.60393
    [288]	validation_0-logloss:0.60395
    [289]	validation_0-logloss:0.60418
    [290]	validation_0-logloss:0.60400
    [291]	validation_0-logloss:0.60397
    [292]	validation_0-logloss:0.60400
    [293]	validation_0-logloss:0.60457
    [294]	validation_0-logloss:0.60491
    [295]	validation_0-logloss:0.60482
    [296]	validation_0-logloss:0.60503
    [297]	validation_0-logloss:0.60526
    [298]	validation_0-logloss:0.60520
    [299]	validation_0-logloss:0.60509
    [300]	validation_0-logloss:0.60484
    [301]	validation_0-logloss:0.60457
    [302]	validation_0-logloss:0.60474
    [303]	validation_0-logloss:0.60462
    [304]	validation_0-logloss:0.60472
    [305]	validation_0-logloss:0.60515
    [306]	validation_0-logloss:0.60481
    [307]	validation_0-logloss:0.60471
    [308]	validation_0-logloss:0.60469
    [309]	validation_0-logloss:0.60460
    [310]	validation_0-logloss:0.60466
    [311]	validation_0-logloss:0.60474
    [312]	validation_0-logloss:0.60487
    [313]	validation_0-logloss:0.60508
    [314]	validation_0-logloss:0.60515
    [315]	validation_0-logloss:0.60525
    [316]	validation_0-logloss:0.60464
    [317]	validation_0-logloss:0.60475
    [318]	validation_0-logloss:0.60480
    [319]	validation_0-logloss:0.60429
    [320]	validation_0-logloss:0.60425
    [321]	validation_0-logloss:0.60446
    [322]	validation_0-logloss:0.60442
    [323]	validation_0-logloss:0.60446
    [324]	validation_0-logloss:0.60472
    [325]	validation_0-logloss:0.60480
    [326]	validation_0-logloss:0.60463
    [327]	validation_0-logloss:0.60456
    [328]	validation_0-logloss:0.60465
    [329]	validation_0-logloss:0.60469
    [330]	validation_0-logloss:0.60477
    [331]	validation_0-logloss:0.60517
    [332]	validation_0-logloss:0.60530
    [333]	validation_0-logloss:0.60528
    [334]	validation_0-logloss:0.60485
    [335]	validation_0-logloss:0.60464
    [336]	validation_0-logloss:0.60450
    [337]	validation_0-logloss:0.60485
    [338]	validation_0-logloss:0.60507
    [339]	validation_0-logloss:0.60503
    [340]	validation_0-logloss:0.60486
    [341]	validation_0-logloss:0.60507
    [342]	validation_0-logloss:0.60502
    [343]	validation_0-logloss:0.60454
    [344]	validation_0-logloss:0.60476
    [345]	validation_0-logloss:0.60511
    [346]	validation_0-logloss:0.60532
    [347]	validation_0-logloss:0.60501
    [348]	validation_0-logloss:0.60510
    [349]	validation_0-logloss:0.60524
    [350]	validation_0-logloss:0.60553
    [351]	validation_0-logloss:0.60552
    [352]	validation_0-logloss:0.60485
    [353]	validation_0-logloss:0.60502
    [354]	validation_0-logloss:0.60475
    [355]	validation_0-logloss:0.60484
    [356]	validation_0-logloss:0.60499
    [357]	validation_0-logloss:0.60494
    [358]	validation_0-logloss:0.60474
    [359]	validation_0-logloss:0.60461
    [360]	validation_0-logloss:0.60477
    [361]	validation_0-logloss:0.60355
    [362]	validation_0-logloss:0.60340
    [363]	validation_0-logloss:0.60368
    [364]	validation_0-logloss:0.60373
    [365]	validation_0-logloss:0.60382
    [366]	validation_0-logloss:0.60382
    [367]	validation_0-logloss:0.60366
    [368]	validation_0-logloss:0.60367
    [369]	validation_0-logloss:0.60350
    [370]	validation_0-logloss:0.60348
    [371]	validation_0-logloss:0.60336
    [372]	validation_0-logloss:0.60300
    [373]	validation_0-logloss:0.60334
    [374]	validation_0-logloss:0.60330
    [375]	validation_0-logloss:0.60371
    [376]	validation_0-logloss:0.60409
    [377]	validation_0-logloss:0.60424
    [378]	validation_0-logloss:0.60393
    [379]	validation_0-logloss:0.60401
    [380]	validation_0-logloss:0.60403
    [381]	validation_0-logloss:0.60395
    [382]	validation_0-logloss:0.60366
    [383]	validation_0-logloss:0.60358
    [384]	validation_0-logloss:0.60356
    [385]	validation_0-logloss:0.60394
    [386]	validation_0-logloss:0.60367
    [387]	validation_0-logloss:0.60399
    [388]	validation_0-logloss:0.60392
    [389]	validation_0-logloss:0.60449
    [390]	validation_0-logloss:0.60467
    [391]	validation_0-logloss:0.60516
    [392]	validation_0-logloss:0.60514
    [393]	validation_0-logloss:0.60507
    [394]	validation_0-logloss:0.60519
    [395]	validation_0-logloss:0.60530
    [396]	validation_0-logloss:0.60509
    [397]	validation_0-logloss:0.60484
    [398]	validation_0-logloss:0.60473
    [399]	validation_0-logloss:0.60446
    [400]	validation_0-logloss:0.60440
    [401]	validation_0-logloss:0.60455
    [402]	validation_0-logloss:0.60452
    [403]	validation_0-logloss:0.60424
    [404]	validation_0-logloss:0.60409
    [405]	validation_0-logloss:0.60405
    [406]	validation_0-logloss:0.60397
    [407]	validation_0-logloss:0.60402
    [408]	validation_0-logloss:0.60391
    [409]	validation_0-logloss:0.60378
    [410]	validation_0-logloss:0.60382
    [411]	validation_0-logloss:0.60386
    [412]	validation_0-logloss:0.60359
    [413]	validation_0-logloss:0.60344
    [414]	validation_0-logloss:0.60370
    [415]	validation_0-logloss:0.60382
    [416]	validation_0-logloss:0.60394
    [417]	validation_0-logloss:0.60401
    [418]	validation_0-logloss:0.60385
    [419]	validation_0-logloss:0.60374
    [420]	validation_0-logloss:0.60382
    [421]	validation_0-logloss:0.60395
    [422]	validation_0-logloss:0.60394
    [423]	validation_0-logloss:0.60395
    [424]	validation_0-logloss:0.60385
    [425]	validation_0-logloss:0.60374
    [426]	validation_0-logloss:0.60343
    [427]	validation_0-logloss:0.60384
    [428]	validation_0-logloss:0.60435
    [429]	validation_0-logloss:0.60471
    [430]	validation_0-logloss:0.60426
    [431]	validation_0-logloss:0.60393
    [432]	validation_0-logloss:0.60411
    [433]	validation_0-logloss:0.60418
    [434]	validation_0-logloss:0.60446
    [435]	validation_0-logloss:0.60360
    [436]	validation_0-logloss:0.60333
    [437]	validation_0-logloss:0.60326
    [438]	validation_0-logloss:0.60335
    [439]	validation_0-logloss:0.60329
    [440]	validation_0-logloss:0.60312
    [441]	validation_0-logloss:0.60343
    [442]	validation_0-logloss:0.60387
    [443]	validation_0-logloss:0.60386
    [444]	validation_0-logloss:0.60377
    [445]	validation_0-logloss:0.60369
    [446]	validation_0-logloss:0.60395
    [447]	validation_0-logloss:0.60427
    [448]	validation_0-logloss:0.60443
    [449]	validation_0-logloss:0.60459
    [450]	validation_0-logloss:0.60452
    [451]	validation_0-logloss:0.60487
    [452]	validation_0-logloss:0.60499
    [453]	validation_0-logloss:0.60422
    [454]	validation_0-logloss:0.60429
    [455]	validation_0-logloss:0.60423
    [456]	validation_0-logloss:0.60457
    [457]	validation_0-logloss:0.60458
    [458]	validation_0-logloss:0.60459
    [459]	validation_0-logloss:0.60461
    [460]	validation_0-logloss:0.60487
    [461]	validation_0-logloss:0.60523
    [462]	validation_0-logloss:0.60522
    [463]	validation_0-logloss:0.60511
    [464]	validation_0-logloss:0.60496
    [465]	validation_0-logloss:0.60522
    [466]	validation_0-logloss:0.60537
    [467]	validation_0-logloss:0.60529
    [468]	validation_0-logloss:0.60488
    [469]	validation_0-logloss:0.60495
    [470]	validation_0-logloss:0.60476
    [471]	validation_0-logloss:0.60436
    [472]	validation_0-logloss:0.60453
    [473]	validation_0-logloss:0.60423
    [474]	validation_0-logloss:0.60389
    [475]	validation_0-logloss:0.60389
    [476]	validation_0-logloss:0.60365
    [477]	validation_0-logloss:0.60376
    [478]	validation_0-logloss:0.60377
    [479]	validation_0-logloss:0.60350
    [480]	validation_0-logloss:0.60341
    [481]	validation_0-logloss:0.60335
    [482]	validation_0-logloss:0.60350
    [483]	validation_0-logloss:0.60303
    [484]	validation_0-logloss:0.60329
    [485]	validation_0-logloss:0.60326
    [486]	validation_0-logloss:0.60336
    [487]	validation_0-logloss:0.60346
    [488]	validation_0-logloss:0.60365
    [489]	validation_0-logloss:0.60350
    [490]	validation_0-logloss:0.60350
    [491]	validation_0-logloss:0.60373
    [492]	validation_0-logloss:0.60363
    [493]	validation_0-logloss:0.60397
    [494]	validation_0-logloss:0.60403
    [495]	validation_0-logloss:0.60371
    [496]	validation_0-logloss:0.60382
    [497]	validation_0-logloss:0.60378
    [498]	validation_0-logloss:0.60390
    [499]	validation_0-logloss:0.60406
    [500]	validation_0-logloss:0.60411
    [501]	validation_0-logloss:0.60401
    [502]	validation_0-logloss:0.60416
    [503]	validation_0-logloss:0.60469
    [504]	validation_0-logloss:0.60466
    [505]	validation_0-logloss:0.60460
    [506]	validation_0-logloss:0.60480
    [507]	validation_0-logloss:0.60445
    [508]	validation_0-logloss:0.60471
    [509]	validation_0-logloss:0.60446
    [510]	validation_0-logloss:0.60447
    [511]	validation_0-logloss:0.60452
    [512]	validation_0-logloss:0.60432
    [513]	validation_0-logloss:0.60395
    [514]	validation_0-logloss:0.60411
    [515]	validation_0-logloss:0.60397
    [516]	validation_0-logloss:0.60418
    [517]	validation_0-logloss:0.60432
    [518]	validation_0-logloss:0.60424
    [519]	validation_0-logloss:0.60419
    [520]	validation_0-logloss:0.60442
    [521]	validation_0-logloss:0.60408
    [522]	validation_0-logloss:0.60413
    [523]	validation_0-logloss:0.60399
    [524]	validation_0-logloss:0.60416
    [525]	validation_0-logloss:0.60426
    [526]	validation_0-logloss:0.60448
    [527]	validation_0-logloss:0.60472
    [528]	validation_0-logloss:0.60455
    [529]	validation_0-logloss:0.60461
    [530]	validation_0-logloss:0.60446
    [531]	validation_0-logloss:0.60432
    [532]	validation_0-logloss:0.60416
    [533]	validation_0-logloss:0.60405
    [534]	validation_0-logloss:0.60423
    [535]	validation_0-logloss:0.60428
    [536]	validation_0-logloss:0.60378
    [537]	validation_0-logloss:0.60372
    [538]	validation_0-logloss:0.60382
    [539]	validation_0-logloss:0.60379
    [540]	validation_0-logloss:0.60388
    [541]	validation_0-logloss:0.60372
    [542]	validation_0-logloss:0.60382
    [543]	validation_0-logloss:0.60378
    [544]	validation_0-logloss:0.60367
    [545]	validation_0-logloss:0.60397
    [546]	validation_0-logloss:0.60379
    [547]	validation_0-logloss:0.60401
    [548]	validation_0-logloss:0.60416
    [549]	validation_0-logloss:0.60442
    [550]	validation_0-logloss:0.60443
    [551]	validation_0-logloss:0.60432
    [552]	validation_0-logloss:0.60414
    [553]	validation_0-logloss:0.60427
    [554]	validation_0-logloss:0.60457
    [555]	validation_0-logloss:0.60423
    [556]	validation_0-logloss:0.60474
    [557]	validation_0-logloss:0.60459
    [558]	validation_0-logloss:0.60463
    [559]	validation_0-logloss:0.60445
    [560]	validation_0-logloss:0.60412
    [561]	validation_0-logloss:0.60404
    [562]	validation_0-logloss:0.60418
    [563]	validation_0-logloss:0.60409
    [564]	validation_0-logloss:0.60425
    [565]	validation_0-logloss:0.60470
    [566]	validation_0-logloss:0.60461
    [567]	validation_0-logloss:0.60490
    [568]	validation_0-logloss:0.60464
    [569]	validation_0-logloss:0.60456
    [570]	validation_0-logloss:0.60474
    [571]	validation_0-logloss:0.60472
    [572]	validation_0-logloss:0.60466
    [573]	validation_0-logloss:0.60453
    [574]	validation_0-logloss:0.60497
    [575]	validation_0-logloss:0.60498
    [576]	validation_0-logloss:0.60512
    [577]	validation_0-logloss:0.60532
    [578]	validation_0-logloss:0.60528
    [579]	validation_0-logloss:0.60516
    [580]	validation_0-logloss:0.60537
    [581]	validation_0-logloss:0.60552
    [582]	validation_0-logloss:0.60537
    [583]	validation_0-logloss:0.60543
    [584]	validation_0-logloss:0.60534
    [585]	validation_0-logloss:0.60534
    [586]	validation_0-logloss:0.60523
    [587]	validation_0-logloss:0.60507
    [588]	validation_0-logloss:0.60517
    [589]	validation_0-logloss:0.60532
    [590]	validation_0-logloss:0.60511
    [591]	validation_0-logloss:0.60522
    [592]	validation_0-logloss:0.60522
    [593]	validation_0-logloss:0.60500
    [594]	validation_0-logloss:0.60504
    [595]	validation_0-logloss:0.60453
    [596]	validation_0-logloss:0.60472
    [597]	validation_0-logloss:0.60476
    [598]	validation_0-logloss:0.60454
    [599]	validation_0-logloss:0.60482
    [600]	validation_0-logloss:0.60493
    [601]	validation_0-logloss:0.60508
    [602]	validation_0-logloss:0.60498
    [603]	validation_0-logloss:0.60468
    [604]	validation_0-logloss:0.60489
    [605]	validation_0-logloss:0.60471
    [606]	validation_0-logloss:0.60445
    [607]	validation_0-logloss:0.60449
    [608]	validation_0-logloss:0.60416
    [609]	validation_0-logloss:0.60470
    [610]	validation_0-logloss:0.60475
    [611]	validation_0-logloss:0.60463
    [612]	validation_0-logloss:0.60459
    [613]	validation_0-logloss:0.60463
    [614]	validation_0-logloss:0.60483
    [615]	validation_0-logloss:0.60463
    [616]	validation_0-logloss:0.60455
    [617]	validation_0-logloss:0.60469
    [618]	validation_0-logloss:0.60512
    [619]	validation_0-logloss:0.60497
    [620]	validation_0-logloss:0.60498
    [621]	validation_0-logloss:0.60506
    [622]	validation_0-logloss:0.60505
    [623]	validation_0-logloss:0.60511
    [624]	validation_0-logloss:0.60516
    [625]	validation_0-logloss:0.60471
    [626]	validation_0-logloss:0.60465
    [627]	validation_0-logloss:0.60462
    [628]	validation_0-logloss:0.60465
    [629]	validation_0-logloss:0.60461
    [630]	validation_0-logloss:0.60509
    [631]	validation_0-logloss:0.60494
    [632]	validation_0-logloss:0.60538
    [633]	validation_0-logloss:0.60578
    [634]	validation_0-logloss:0.60573
    [635]	validation_0-logloss:0.60580
    [636]	validation_0-logloss:0.60596
    [637]	validation_0-logloss:0.60593
    [638]	validation_0-logloss:0.60586
    [639]	validation_0-logloss:0.60597
    [640]	validation_0-logloss:0.60609
    [641]	validation_0-logloss:0.60606
    [642]	validation_0-logloss:0.60550
    [643]	validation_0-logloss:0.60544
    [644]	validation_0-logloss:0.60542
    [645]	validation_0-logloss:0.60576
    [646]	validation_0-logloss:0.60561
    [647]	validation_0-logloss:0.60587
    [648]	validation_0-logloss:0.60584
    [649]	validation_0-logloss:0.60494
    [650]	validation_0-logloss:0.60505
    [651]	validation_0-logloss:0.60494
    [652]	validation_0-logloss:0.60488
    [653]	validation_0-logloss:0.60494
    [654]	validation_0-logloss:0.60439
    [655]	validation_0-logloss:0.60448
    [656]	validation_0-logloss:0.60448
    [657]	validation_0-logloss:0.60455
    [658]	validation_0-logloss:0.60459
    [659]	validation_0-logloss:0.60436
    [660]	validation_0-logloss:0.60424
    [661]	validation_0-logloss:0.60412
    [662]	validation_0-logloss:0.60409
    [663]	validation_0-logloss:0.60410
    [664]	validation_0-logloss:0.60421
    [665]	validation_0-logloss:0.60425
    [666]	validation_0-logloss:0.60453
    [667]	validation_0-logloss:0.60444
    [668]	validation_0-logloss:0.60434
    [669]	validation_0-logloss:0.60442
    [670]	validation_0-logloss:0.60437
    [671]	validation_0-logloss:0.60456
    [672]	validation_0-logloss:0.60458
    [673]	validation_0-logloss:0.60443
    [674]	validation_0-logloss:0.60407
    [675]	validation_0-logloss:0.60402
    [676]	validation_0-logloss:0.60406
    [677]	validation_0-logloss:0.60406
    [678]	validation_0-logloss:0.60412
    [679]	validation_0-logloss:0.60435
    [680]	validation_0-logloss:0.60433
    [681]	validation_0-logloss:0.60408
    [682]	validation_0-logloss:0.60389
    [683]	validation_0-logloss:0.60368
    [684]	validation_0-logloss:0.60364
    [685]	validation_0-logloss:0.60370
    [686]	validation_0-logloss:0.60360
    [687]	validation_0-logloss:0.60370
    [688]	validation_0-logloss:0.60363
    [689]	validation_0-logloss:0.60367
    [690]	validation_0-logloss:0.60391
    [691]	validation_0-logloss:0.60374
    [692]	validation_0-logloss:0.60393
    [693]	validation_0-logloss:0.60394
    [694]	validation_0-logloss:0.60422
    [695]	validation_0-logloss:0.60424
    [696]	validation_0-logloss:0.60417
    [697]	validation_0-logloss:0.60411
    [698]	validation_0-logloss:0.60426
    [699]	validation_0-logloss:0.60473
    [700]	validation_0-logloss:0.60487
    [701]	validation_0-logloss:0.60560
    [702]	validation_0-logloss:0.60577
    [703]	validation_0-logloss:0.60570
    [704]	validation_0-logloss:0.60535
    [705]	validation_0-logloss:0.60524
    [706]	validation_0-logloss:0.60532
    [707]	validation_0-logloss:0.60555
    [708]	validation_0-logloss:0.60548
    [709]	validation_0-logloss:0.60556
    [710]	validation_0-logloss:0.60569
    [711]	validation_0-logloss:0.60592
    [712]	validation_0-logloss:0.60615
    [713]	validation_0-logloss:0.60617
    [714]	validation_0-logloss:0.60631
    [715]	validation_0-logloss:0.60655
    [716]	validation_0-logloss:0.60684
    [717]	validation_0-logloss:0.60676
    [718]	validation_0-logloss:0.60646
    [719]	validation_0-logloss:0.60614
    [720]	validation_0-logloss:0.60583
    [721]	validation_0-logloss:0.60571
    [722]	validation_0-logloss:0.60550
    [723]	validation_0-logloss:0.60545
    [724]	validation_0-logloss:0.60471
    [725]	validation_0-logloss:0.60475
    [726]	validation_0-logloss:0.60462
    [727]	validation_0-logloss:0.60456
    [728]	validation_0-logloss:0.60422
    [729]	validation_0-logloss:0.60413
    [730]	validation_0-logloss:0.60415
    [731]	validation_0-logloss:0.60436
    [732]	validation_0-logloss:0.60453
    [733]	validation_0-logloss:0.60435
    [734]	validation_0-logloss:0.60413
    [735]	validation_0-logloss:0.60428
    [736]	validation_0-logloss:0.60421
    [737]	validation_0-logloss:0.60376
    [738]	validation_0-logloss:0.60376
    [739]	validation_0-logloss:0.60379
    [740]	validation_0-logloss:0.60400
    [741]	validation_0-logloss:0.60416
    [742]	validation_0-logloss:0.60410
    [743]	validation_0-logloss:0.60400
    [744]	validation_0-logloss:0.60408
    [745]	validation_0-logloss:0.60419
    [746]	validation_0-logloss:0.60411
    [747]	validation_0-logloss:0.60401
    [748]	validation_0-logloss:0.60395
    [749]	validation_0-logloss:0.60409
    [750]	validation_0-logloss:0.60397
    [751]	validation_0-logloss:0.60388
    [752]	validation_0-logloss:0.60448
    [753]	validation_0-logloss:0.60439
    [754]	validation_0-logloss:0.60436
    [755]	validation_0-logloss:0.60419
    [756]	validation_0-logloss:0.60411
    [757]	validation_0-logloss:0.60439
    [758]	validation_0-logloss:0.60456
    [759]	validation_0-logloss:0.60472
    [760]	validation_0-logloss:0.60418
    [761]	validation_0-logloss:0.60395
    [762]	validation_0-logloss:0.60395
    [763]	validation_0-logloss:0.60384
    [764]	validation_0-logloss:0.60380
    [765]	validation_0-logloss:0.60412
    [766]	validation_0-logloss:0.60415
    [767]	validation_0-logloss:0.60427
    [768]	validation_0-logloss:0.60411
    [769]	validation_0-logloss:0.60426
    [770]	validation_0-logloss:0.60430
    [771]	validation_0-logloss:0.60455
    [772]	validation_0-logloss:0.60482
    [773]	validation_0-logloss:0.60490
    [774]	validation_0-logloss:0.60482
    [775]	validation_0-logloss:0.60506
    [776]	validation_0-logloss:0.60499
    [777]	validation_0-logloss:0.60479
    [778]	validation_0-logloss:0.60462
    [779]	validation_0-logloss:0.60462
    [780]	validation_0-logloss:0.60461
    [781]	validation_0-logloss:0.60505
    [782]	validation_0-logloss:0.60512
    [783]	validation_0-logloss:0.60534
    [784]	validation_0-logloss:0.60552
    [785]	validation_0-logloss:0.60558
    [786]	validation_0-logloss:0.60575
    [787]	validation_0-logloss:0.60570
    [788]	validation_0-logloss:0.60578
    [789]	validation_0-logloss:0.60564
    [790]	validation_0-logloss:0.60568
    [791]	validation_0-logloss:0.60587
    [792]	validation_0-logloss:0.60602
    [793]	validation_0-logloss:0.60574
    [794]	validation_0-logloss:0.60576
    [795]	validation_0-logloss:0.60569
    [796]	validation_0-logloss:0.60569
    [797]	validation_0-logloss:0.60633
    [798]	validation_0-logloss:0.60678
    [799]	validation_0-logloss:0.60706
    [800]	validation_0-logloss:0.60701
    [801]	validation_0-logloss:0.60686
    [802]	validation_0-logloss:0.60681
    [803]	validation_0-logloss:0.60680
    [804]	validation_0-logloss:0.60670
    [805]	validation_0-logloss:0.60700
    [806]	validation_0-logloss:0.60709
    [807]	validation_0-logloss:0.60697
    [808]	validation_0-logloss:0.60676
    [809]	validation_0-logloss:0.60660
    [810]	validation_0-logloss:0.60628
    [811]	validation_0-logloss:0.60646
    [812]	validation_0-logloss:0.60627
    [813]	validation_0-logloss:0.60681
    [814]	validation_0-logloss:0.60678
    [815]	validation_0-logloss:0.60702
    [816]	validation_0-logloss:0.60666
    [817]	validation_0-logloss:0.60681
    [818]	validation_0-logloss:0.60716
    [819]	validation_0-logloss:0.60757
    [820]	validation_0-logloss:0.60738
    [821]	validation_0-logloss:0.60758
    [822]	validation_0-logloss:0.60761
    [823]	validation_0-logloss:0.60766
    [824]	validation_0-logloss:0.60746
    [825]	validation_0-logloss:0.60728
    [826]	validation_0-logloss:0.60736
    [827]	validation_0-logloss:0.60739
    [828]	validation_0-logloss:0.60743
    [829]	validation_0-logloss:0.60748
    [830]	validation_0-logloss:0.60727
    [831]	validation_0-logloss:0.60745
    [832]	validation_0-logloss:0.60717
    [833]	validation_0-logloss:0.60697
    [834]	validation_0-logloss:0.60676
    [835]	validation_0-logloss:0.60640
    [836]	validation_0-logloss:0.60708
    [837]	validation_0-logloss:0.60744
    [838]	validation_0-logloss:0.60775
    [839]	validation_0-logloss:0.60798
    [840]	validation_0-logloss:0.60808
    [841]	validation_0-logloss:0.60765
    [842]	validation_0-logloss:0.60776
    [843]	validation_0-logloss:0.60782
    [844]	validation_0-logloss:0.60783
    [845]	validation_0-logloss:0.60776
    [846]	validation_0-logloss:0.60800
    [847]	validation_0-logloss:0.60782
    [848]	validation_0-logloss:0.60815
    [849]	validation_0-logloss:0.60799
    [850]	validation_0-logloss:0.60784
    [851]	validation_0-logloss:0.60796
    [852]	validation_0-logloss:0.60805
    [853]	validation_0-logloss:0.60803
    [854]	validation_0-logloss:0.60794
    [855]	validation_0-logloss:0.60811
    [856]	validation_0-logloss:0.60789
    [857]	validation_0-logloss:0.60779
    [858]	validation_0-logloss:0.60777
    [859]	validation_0-logloss:0.60769
    [860]	validation_0-logloss:0.60778
    [861]	validation_0-logloss:0.60765
    [862]	validation_0-logloss:0.60734
    [863]	validation_0-logloss:0.60729
    [864]	validation_0-logloss:0.60720
    [865]	validation_0-logloss:0.60696
    [866]	validation_0-logloss:0.60701
    [867]	validation_0-logloss:0.60726
    [868]	validation_0-logloss:0.60718
    [869]	validation_0-logloss:0.60698
    [870]	validation_0-logloss:0.60683
    [871]	validation_0-logloss:0.60689
    [872]	validation_0-logloss:0.60708
    [873]	validation_0-logloss:0.60722
    [874]	validation_0-logloss:0.60703
    [875]	validation_0-logloss:0.60677
    [876]	validation_0-logloss:0.60664
    [877]	validation_0-logloss:0.60656
    [878]	validation_0-logloss:0.60645
    [879]	validation_0-logloss:0.60644
    [880]	validation_0-logloss:0.60642
    [881]	validation_0-logloss:0.60628
    [882]	validation_0-logloss:0.60623
    [883]	validation_0-logloss:0.60586
    [884]	validation_0-logloss:0.60563
    [885]	validation_0-logloss:0.60562
    [886]	validation_0-logloss:0.60593
    [887]	validation_0-logloss:0.60599
    [888]	validation_0-logloss:0.60578
    [889]	validation_0-logloss:0.60594
    [890]	validation_0-logloss:0.60606
    [891]	validation_0-logloss:0.60617
    [892]	validation_0-logloss:0.60616
    [893]	validation_0-logloss:0.60620
    [894]	validation_0-logloss:0.60611
    [895]	validation_0-logloss:0.60604
    [896]	validation_0-logloss:0.60608
    [897]	validation_0-logloss:0.60654
    [898]	validation_0-logloss:0.60656
    [899]	validation_0-logloss:0.60647
    [900]	validation_0-logloss:0.60649
    [901]	validation_0-logloss:0.60647
    [902]	validation_0-logloss:0.60646
    [903]	validation_0-logloss:0.60673
    [904]	validation_0-logloss:0.60678
    [905]	validation_0-logloss:0.60708
    [906]	validation_0-logloss:0.60672
    [907]	validation_0-logloss:0.60680
    [908]	validation_0-logloss:0.60665
    [909]	validation_0-logloss:0.60660
    [910]	validation_0-logloss:0.60646
    [911]	validation_0-logloss:0.60655
    [912]	validation_0-logloss:0.60660
    [913]	validation_0-logloss:0.60635
    [914]	validation_0-logloss:0.60667
    [915]	validation_0-logloss:0.60676
    [916]	validation_0-logloss:0.60678
    [917]	validation_0-logloss:0.60682
    [918]	validation_0-logloss:0.60632
    [919]	validation_0-logloss:0.60579
    [920]	validation_0-logloss:0.60602
    [921]	validation_0-logloss:0.60611
    [922]	validation_0-logloss:0.60623
    [923]	validation_0-logloss:0.60628
    [924]	validation_0-logloss:0.60643
    [925]	validation_0-logloss:0.60628
    [926]	validation_0-logloss:0.60611
    [927]	validation_0-logloss:0.60583
    [928]	validation_0-logloss:0.60574
    [929]	validation_0-logloss:0.60544
    [930]	validation_0-logloss:0.60559
    [931]	validation_0-logloss:0.60561
    [932]	validation_0-logloss:0.60572
    [933]	validation_0-logloss:0.60564
    [934]	validation_0-logloss:0.60589
    [935]	validation_0-logloss:0.60591
    [936]	validation_0-logloss:0.60569
    [937]	validation_0-logloss:0.60572
    [938]	validation_0-logloss:0.60552
    [939]	validation_0-logloss:0.60558
    [940]	validation_0-logloss:0.60522
    [941]	validation_0-logloss:0.60468
    [942]	validation_0-logloss:0.60427
    [943]	validation_0-logloss:0.60452
    [944]	validation_0-logloss:0.60500
    [945]	validation_0-logloss:0.60481
    [946]	validation_0-logloss:0.60507
    [947]	validation_0-logloss:0.60503
    [948]	validation_0-logloss:0.60505
    [949]	validation_0-logloss:0.60494
    [950]	validation_0-logloss:0.60439
    [951]	validation_0-logloss:0.60454
    [952]	validation_0-logloss:0.60453
    [953]	validation_0-logloss:0.60467
    [954]	validation_0-logloss:0.60456
    [955]	validation_0-logloss:0.60452
    [956]	validation_0-logloss:0.60464
    [957]	validation_0-logloss:0.60494
    [958]	validation_0-logloss:0.60493
    [959]	validation_0-logloss:0.60518
    [960]	validation_0-logloss:0.60535
    [961]	validation_0-logloss:0.60534
    [962]	validation_0-logloss:0.60530
    [963]	validation_0-logloss:0.60515
    [964]	validation_0-logloss:0.60497
    [965]	validation_0-logloss:0.60475
    [966]	validation_0-logloss:0.60487
    [967]	validation_0-logloss:0.60496
    [968]	validation_0-logloss:0.60503
    [969]	validation_0-logloss:0.60510
    [970]	validation_0-logloss:0.60502
    [971]	validation_0-logloss:0.60511
    [972]	validation_0-logloss:0.60512
    [973]	validation_0-logloss:0.60506
    [974]	validation_0-logloss:0.60495
    [975]	validation_0-logloss:0.60517
    [976]	validation_0-logloss:0.60527
    [977]	validation_0-logloss:0.60520
    [978]	validation_0-logloss:0.60499
    [979]	validation_0-logloss:0.60524
    [980]	validation_0-logloss:0.60502
    [981]	validation_0-logloss:0.60549
    [982]	validation_0-logloss:0.60578
    [983]	validation_0-logloss:0.60528
    [984]	validation_0-logloss:0.60477
    [985]	validation_0-logloss:0.60478
    [986]	validation_0-logloss:0.60509
    [987]	validation_0-logloss:0.60460
    [988]	validation_0-logloss:0.60440
    [989]	validation_0-logloss:0.60463
    [990]	validation_0-logloss:0.60491
    [991]	validation_0-logloss:0.60490
    [992]	validation_0-logloss:0.60493
    [993]	validation_0-logloss:0.60501
    [994]	validation_0-logloss:0.60499
    [995]	validation_0-logloss:0.60497
    [996]	validation_0-logloss:0.60508
    [997]	validation_0-logloss:0.60511
    [998]	validation_0-logloss:0.60555
    [999]	validation_0-logloss:0.60554
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676
    • 677
    • 678
    • 679
    • 680
    • 681
    • 682
    • 683
    • 684
    • 685
    • 686
    • 687
    • 688
    • 689
    • 690
    • 691
    • 692
    • 693
    • 694
    • 695
    • 696
    • 697
    • 698
    • 699
    • 700
    • 701
    • 702
    • 703
    • 704
    • 705
    • 706
    • 707
    • 708
    • 709
    • 710
    • 711
    • 712
    • 713
    • 714
    • 715
    • 716
    • 717
    • 718
    • 719
    • 720
    • 721
    • 722
    • 723
    • 724
    • 725
    • 726
    • 727
    • 728
    • 729
    • 730
    • 731
    • 732
    • 733
    • 734
    • 735
    • 736
    • 737
    • 738
    • 739
    • 740
    • 741
    • 742
    • 743
    • 744
    • 745
    • 746
    • 747
    • 748
    • 749
    • 750
    • 751
    • 752
    • 753
    • 754
    • 755
    • 756
    • 757
    • 758
    • 759
    • 760
    • 761
    • 762
    • 763
    • 764
    • 765
    • 766
    • 767
    • 768
    • 769
    • 770
    • 771
    • 772
    • 773
    • 774
    • 775
    • 776
    • 777
    • 778
    • 779
    • 780
    • 781
    • 782
    • 783
    • 784
    • 785
    • 786
    • 787
    • 788
    • 789
    • 790
    • 791
    • 792
    • 793
    • 794
    • 795
    • 796
    • 797
    • 798
    • 799
    • 800
    • 801
    • 802
    • 803
    • 804
    • 805
    • 806
    • 807
    • 808
    • 809
    • 810
    • 811
    • 812
    • 813
    • 814
    • 815
    • 816
    • 817
    • 818
    • 819
    • 820
    • 821
    • 822
    • 823
    • 824
    • 825
    • 826
    • 827
    • 828
    • 829
    • 830
    • 831
    • 832
    • 833
    • 834
    • 835
    • 836
    • 837
    • 838
    • 839
    • 840
    • 841
    • 842
    • 843
    • 844
    • 845
    • 846
    • 847
    • 848
    • 849
    • 850
    • 851
    • 852
    • 853
    • 854
    • 855
    • 856
    • 857
    • 858
    • 859
    • 860
    • 861
    • 862
    • 863
    • 864
    • 865
    • 866
    • 867
    • 868
    • 869
    • 870
    • 871
    • 872
    • 873
    • 874
    • 875
    • 876
    • 877
    • 878
    • 879
    • 880
    • 881
    • 882
    • 883
    • 884
    • 885
    • 886
    • 887
    • 888
    • 889
    • 890
    • 891
    • 892
    • 893
    • 894
    • 895
    • 896
    • 897
    • 898
    • 899
    • 900
    • 901
    • 902
    • 903
    • 904
    • 905
    • 906
    • 907
    • 908
    • 909
    • 910
    • 911
    • 912
    • 913
    • 914
    • 915
    • 916
    • 917
    • 918
    • 919
    • 920
    • 921
    • 922
    • 923
    • 924
    • 925
    • 926
    • 927
    • 928
    • 929
    • 930
    • 931
    • 932
    • 933
    • 934
    • 935
    • 936
    • 937
    • 938
    • 939
    • 940
    • 941
    • 942
    • 943
    • 944
    • 945
    • 946
    • 947
    • 948
    • 949
    • 950
    • 951
    • 952
    • 953
    • 954
    • 955
    • 956
    • 957
    • 958
    • 959
    • 960
    • 961
    • 962
    • 963
    • 964
    • 965
    • 966
    • 967
    • 968
    • 969
    • 970
    • 971
    • 972
    • 973
    • 974
    • 975
    • 976
    • 977
    • 978
    • 979
    • 980
    • 981
    • 982
    • 983
    • 984
    • 985
    • 986
    • 987
    • 988
    • 989
    • 990
    • 991
    • 992
    • 993
    • 994
    • 995
    • 996
    • 997
    • 998
    • 999
    • 1000
    • 1001

    step-04 确认最优参数

    print(clf.best_params_)
    
    • 1
    {'base_score': 0.5, 'colsample_bylevel': 0.7, 'colsample_bynode': 0.7, 'colsample_bytree': 0.6, 'gamma': 0, 'learning_rate': 0.1, 'max_bin': 12, 'max_depth': 6, 'min_child_weight': 30, 'n_estimators': 1000, 'reg_alpha': 2, 'reg_lambda': 3, 'subsample': 0.65}
    
    • 1

    step-05 选取最优模型

    best_model=clf.best_estimator_
    
    • 1

    step-06 评价最优模型

    model_eval2(best_model, train.values, test.values)
    
    • 1
    train_roc_auc_score: 0.8766644056264636
    test_roc_auc_score: 0.7278343023255814
    train_accuracy_score: 0.8
    test_accuracy_score: 0.6833333333333333
    train_precision_score: 0.8069963811821471
    test__precision_score: 0.7162921348314607
    train_recall_score: 0.8479087452471483
    test_recall_score: 0.7412790697674418
    train_f1_score: 0.8269468479604452
    test_f1_score: 0.7285714285714285
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    step-07 保存并调用模型

    joblib.dump(best_model ,  r'D:\Ensemble_Learning\xgboostinfo\xgboostgridbest.model')
    best_model=joblib.load( r'D:\Ensemble_Learning\xgboostinfo\xgboostgridbest.model')
    model_eval2(best_model, train.values, test.values)
    
    • 1
    • 2
    • 3
    train_roc_auc_score: 0.8766644056264636
    test_roc_auc_score: 0.7278343023255814
    train_accuracy_score: 0.8
    test_accuracy_score: 0.6833333333333333
    train_precision_score: 0.8069963811821471
    test__precision_score: 0.7162921348314607
    train_recall_score: 0.8479087452471483
    test_recall_score: 0.7412790697674418
    train_f1_score: 0.8269468479604452
    test_f1_score: 0.7285714285714285
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    
    
    • 1
  • 相关阅读:
    CSS 响应式设计:网格视图
    uniapp微信小程序隐私保护引导新规
    方波信号发生器电路仿真,小波神经网络算法原理
    python机器学习入门之numpy的用法(超详细,必看)
    区块链技术中的共识机制算法:以工作量证明(PoW)为例
    【力扣每日一题01】两数之和
    【气泵方案】SUP桨板冲浪板打气泵芯片方案
    2022年最新西藏建筑施工架子工(建筑特种作业)模拟考试试题及答案
    【探索AI】四:AI(人工智能)自然语言处理(NLP)
    iNFTnews | 福布斯的Web3探索
  • 原文地址:https://blog.csdn.net/u012338969/article/details/127721728