• 导数求函数的单调性与极值习题


    证明:当 x > 0 x>0 x>0时, sin ⁡ x + cos ⁡ x > − x 2 + x + 1 \sin x+\cos x>-x^2+x+1 sinx+cosx>x2+x+1

    证明:
    \qquad f ( x ) = sin ⁡ x + cos ⁡ x + x 2 − x − 1 f(x)=\sin x+\cos x+x^2-x-1 f(x)=sinx+cosx+x2x1
    \qquad f ′ ( x ) = cos ⁡ x − sin ⁡ x + 2 x − 1 f'(x)=\cos x-\sin x+2x-1 f(x)=cosxsinx+2x1
    f ′ ′ ( x ) = − sin ⁡ x − cos ⁡ x + 2 = ( 1 − sin ⁡ x ) + ( 1 − cos ⁡ x ) \qquad f''(x)=-\sin x-\cos x+2=(1-\sin x)+(1-\cos x) f′′(x)=sinxcosx+2=(1sinx)+(1cosx)

    \qquad x > 0 x>0 x>0时, f ′ ′ ( x ) ≥ 0 f''(x)\geq0 f′′(x)0,即 f ′ ( x ) f'(x) f(x)单调递增,故 f ′ ( x ) f'(x) f(x)有最小值 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0

    \qquad f ′ ( x ) f'(x) f(x)有最小值 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,即恒有 f ( x ) > f ( 0 ) = 0 f(x)>f(0)=0 f(x)>f(0)=0

    f ( x ) \qquad f(x) f(x)单调递增,即 f ( x ) f(x) f(x)有最小值 f ( 0 ) = 0 f(0)=0 f(0)=0

    x > 0 \qquad x>0 x>0 f ( x ) > 0 f(x)>0 f(x)>0,得证 x > 0 x>0 x>0 sin ⁡ x + cos ⁡ x > − x 2 + x + 1 \sin x+\cos x>-x^2+x+1 sinx+cosx>x2+x+1

  • 相关阅读:
    Ajax学习:原生jsonp实践
    考研是为了逃避找工作的压力吗?
    CornerNet-Lite训练自己的数据集
    ELF文件格式
    小蓝的钥匙(蓝桥杯错排)
    prosemirror error - Applying a mismatched transaction
    SaaSBase:什么是为知笔记?
    技术对接46
    nuxt3踩坑
    一文详解扩散模型:DDPM
  • 原文地址:https://blog.csdn.net/tanjunming2020/article/details/127712399