证明:当 x > 0 x>0 x>0时, sin x + cos x > − x 2 + x + 1 \sin x+\cos x>-x^2+x+1 sinx+cosx>−x2+x+1
证明:
\qquad
令
f
(
x
)
=
sin
x
+
cos
x
+
x
2
−
x
−
1
f(x)=\sin x+\cos x+x^2-x-1
f(x)=sinx+cosx+x2−x−1
\qquad
则
f
′
(
x
)
=
cos
x
−
sin
x
+
2
x
−
1
f'(x)=\cos x-\sin x+2x-1
f′(x)=cosx−sinx+2x−1
f
′
′
(
x
)
=
−
sin
x
−
cos
x
+
2
=
(
1
−
sin
x
)
+
(
1
−
cos
x
)
\qquad f''(x)=-\sin x-\cos x+2=(1-\sin x)+(1-\cos x)
f′′(x)=−sinx−cosx+2=(1−sinx)+(1−cosx)
\qquad 当 x > 0 x>0 x>0时, f ′ ′ ( x ) ≥ 0 f''(x)\geq0 f′′(x)≥0,即 f ′ ( x ) f'(x) f′(x)单调递增,故 f ′ ( x ) f'(x) f′(x)有最小值 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0
\qquad 故 f ′ ( x ) f'(x) f′(x)有最小值 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0,即恒有 f ( x ) > f ( 0 ) = 0 f(x)>f(0)=0 f(x)>f(0)=0
f ( x ) \qquad f(x) f(x)单调递增,即 f ( x ) f(x) f(x)有最小值 f ( 0 ) = 0 f(0)=0 f(0)=0
x > 0 \qquad x>0 x>0时 f ( x ) > 0 f(x)>0 f(x)>0,得证 x > 0 x>0 x>0时 sin x + cos x > − x 2 + x + 1 \sin x+\cos x>-x^2+x+1 sinx+cosx>−x2+x+1