目录
①SYSU模式识别课程作业
②配置:基于Windows11、OpenCV4.5.5、VSCode、CMake(参考OpenCV配置方式)
③原理及源码介绍:Face Recognition with OpenCV
④数据集:ORL Database of Faces
①源码:
- import sys
- import os.path
-
- if __name__ == "__main__":
-
- BASE_PATH = './ORL/att_faces/orl_faces/'
- SEPARATOR = ";"
- dir_txt = open("./dir.txt", 'w')
-
- label = 0
- for dirname, dirnames, filenames in os.walk(BASE_PATH):
- # dirname当前路径; dirnames当前路径下所有目录名(不包含子目录);filenames当前路径下的所有文件名(不包含子目录)
- for subdirname in dirnames: # 遍历每一个目录
- subject_path = os.path.join(dirname, subdirname)
- for filename in os.listdir(subject_path):
- abs_path = "%s/%s" % (subject_path, filename)
- print("%s%s%d" % (abs_path, SEPARATOR, label))
- dir_txt.write(abs_path)
- dir_txt.write(SEPARATOR)
- dir_txt.write(str(label))
- dir_txt.write("\n")
- label = label + 1
- dir_txt.close()
②运行及结果:
python create_csv.py

①源码:
- // 引用依赖
- #include "opencv2/core.hpp"
- #include "opencv2/face.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include
- #include
- #include
-
- // 使用相应的命名空间
- using namespace cv;
- using namespace cv::face;
- using namespace std;
-
- // 标准化函数
- static Mat norm_0_255(InputArray _src) {
- Mat src = _src.getMat();
- // Create and return normalized image:
- Mat dst;
- switch(src.channels()) {
- case 1:
- cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
- break;
- case 3:
- cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
- break;
- default:
- src.copyTo(dst);
- break;
- }
- return dst;
- }
-
- // 读取CSV文件函数
- static void read_csv(const string& filename, vector
& images, vector<int>& labels, char separator = ';') { - std::ifstream file(filename.c_str(), ifstream::in);
- if (!file) {
- string error_message = "No valid input file was given, please check the given filename.";
- CV_Error(Error::StsBadArg, error_message);
- }
- string line, path, classlabel;
- while (getline(file, line)) {
- stringstream liness(line);
- getline(liness, path, separator);
- getline(liness, classlabel);
- if(!path.empty() && !classlabel.empty()) {
- images.push_back(imread(path, 0));
- labels.push_back(atoi(classlabel.c_str()));
- }
- }
- }
- int main(int argc, const char *argv[]) {
-
- //检查argc是否符合要求
- if (argc < 2) {
- cout << "usage: " << argv[0] << "
" << endl; - exit(1);
- }
- string output_folder = ".";
- if (argc == 3) {
- output_folder = string(argv[2]);
- }
-
- // CSV文件的路径
- string fn_csv = string(argv[1]);
-
- // 初始化存储imgs和labels的向量
- vector
images; - vector<int> labels;
-
- // 读取CSV文件
- try {
- read_csv(fn_csv, images, labels);
- } catch (const cv::Exception& e) {
- cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
- exit(1);
- }
-
- // 判断img数目是否符合要求
- if(images.size() <= 1) {
- string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
- CV_Error(Error::StsError, error_message);
- }
-
- // images的高度
- int height = images[0].rows;
-
- // 从训练集中选择一张图片作为测试集
- Mat testSample = images[images.size() - 1];
- int testLabel = labels[labels.size() - 1];
- images.pop_back();
- labels.pop_back();
-
- // 创建模型,使用PCA特征脸算法
- Ptr
model = EigenFaceRecognizer::create(); - model->train(images, labels); // 训练模型
- int predictedLabel = model->predict(testSample); // 使用测试集测试模型
-
- // 打印准确率
- string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
- cout << result_message << endl;
- // 获取模型的特征值
- Mat eigenvalues = model->getEigenValues();
- // 展示特征向量
- Mat W = model->getEigenVectors();
- // 从训练集中获取样本均值
- Mat mean = model->getMean();
- // 根据argc判断进行展示或保存操作
- if(argc == 2) {
- imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
- } else {
- imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
- }
- // 显示或保存特征脸
- for (int i = 0; i < min(10, W.cols); i++) {
- string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
- cout << msg << endl;
- // 获取特征向量
- Mat ev = W.col(i).clone();
- // resize成原始大小,并归一化到0-255
- Mat grayscale = norm_0_255(ev.reshape(1, height));
- // 显示图像并应用Jet颜色图以获得更好的观感。
- Mat cgrayscale;
- applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
- // 根据argc判断进行展示或保存操作
- if(argc == 2) {
- imshow(format("eigenface_%d", i), cgrayscale);
- } else {
- imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
- }
- }
- // 在一些预定义的步骤中显示或保存图像重建的过程:
- for(int num_components = min(W.cols, 10); num_components < min(W.cols, 300); num_components+=15) {
- // 从模型中分割特征向量
- Mat evs = Mat(W, Range::all(), Range(0, num_components));
- Mat projection = LDA::subspaceProject(evs, mean, images[0].reshape(1,1));
- Mat reconstruction = LDA::subspaceReconstruct(evs, mean, projection);
- // 归一化
- reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
- // 根据argc判断进行展示或保存操作
- if(argc == 2) {
- imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
- } else {
- imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
- }
- }
- // 如果没有写入输出文件夹,则等待键盘输入
- if(argc == 2) {
- waitKey(0);
- }
- return 0;
- }
②编译过程:
CMakeLists.txt如下:
- cmake_minimum_required(VERSION 3.24) # 指定 cmake的 最小版本
- project(test) # 设置项目名称
-
- find_package(Opencv REQUIRED)
- INCLUDE_DIRECTORIES(${OpenCV_INCLUDE_DIRS})
- add_executable(eigenfaces_demo eigenfaces.cpp) # 生成可执行文件
- target_link_libraries(eigenfaces_demo ${OpenCV_LIBS} ) # 设置target需要链接的库
- mkdir build
-
- cd build
-
- cmake ..
-
- cd ..
-
- mingw32-make
③运行及结果展示:
./eigenfaces_demo.exe ./dir.txt ./Engenfaces_Result

特征图:(简单修改源程序生成的文件名,再按顺序进行拼接即可生成拼接图,拼接程序参考)

重建过程:

均值图:

①源码:
- // 引用依赖
- #include "opencv2/core.hpp"
- #include "opencv2/face.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include
- #include
- #include
-
- // 使用相应的命名空间
- using namespace cv;
- using namespace cv::face;
- using namespace std;
-
- // 标准化函数
- static Mat norm_0_255(InputArray _src) {
- Mat src = _src.getMat();
- Mat dst;
- switch(src.channels()) {
- case 1:
- cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
- break;
- case 3:
- cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
- break;
- default:
- src.copyTo(dst);
- break;
- }
- return dst;
- }
-
- // 读取csv文件函数
- static void read_csv(const string& filename, vector
& images, vector<int>& labels, char separator = ';') { - std::ifstream file(filename.c_str(), ifstream::in);
- if (!file) {
- string error_message = "No valid input file was given, please check the given filename.";
- CV_Error(Error::StsBadArg, error_message);
- }
- string line, path, classlabel;
- while (getline(file, line)) {
- stringstream liness(line);
- getline(liness, path, separator);
- getline(liness, classlabel);
- if(!path.empty() && !classlabel.empty()) {
- images.push_back(imread(path, 0));
- labels.push_back(atoi(classlabel.c_str()));
- }
- }
- }
-
- int main(int argc, const char *argv[]) {
-
- //检查argc是否符合要求
- if (argc < 2) {
- cout << "usage: " << argv[0] << "
" << endl; - exit(1);
- }
- string output_folder = ".";
- if (argc == 3) {
- output_folder = string(argv[2]);
- }
-
- // CSV文件的路径
- string fn_csv = string(argv[1]);
-
- // 初始化存储imgs和labels的向量
- vector
images; - vector<int> labels;
-
- // 读取CSV文件
- try {
- read_csv(fn_csv, images, labels);
- } catch (const cv::Exception& e) {
- cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
- exit(1);
- }
-
- // 判断img数目是否符合要求
- if(images.size() <= 1) {
- string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
- CV_Error(Error::StsError, error_message);
- }
-
- // images的高度
- int height = images[0].rows;
-
- // 从训练集中选择一张图片作为测试集
- Mat testSample = images[images.size() - 1];
- int testLabel = labels[labels.size() - 1];
- images.pop_back();
- labels.pop_back();
-
- // 创建模型,使用LDA线性判别分析
- Ptr
model = FisherFaceRecognizer::create(); - model->train(images, labels); // 训练模型
-
- int predictedLabel = model->predict(testSample); // 使用测试集测试模型
-
- // 打印准确率
- string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
- cout << result_message << endl;
- // 获取模型的特征值
- Mat eigenvalues = model->getEigenValues();
- // 展示特征向量
- Mat W = model->getEigenVectors();
- // 从训练集中获取样本均值
- Mat mean = model->getMean();
- // 根据argc判断进行展示或保存操作
- if(argc == 2) {
- imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
- } else {
- imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
- }
- // 显示或保存特征脸
- for (int i = 0; i < min(16, W.cols); i++) {
- string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
- cout << msg << endl;
- // 获取特征向量
- Mat ev = W.col(i).clone();
- // resize成原始大小,并归一化到0-255
- Mat grayscale = norm_0_255(ev.reshape(1, height));
- // 显示图像并应用Jet颜色图以获得更好的观感。
- Mat cgrayscale;
- applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
- // 根据argc判断进行展示或保存操作
- if(argc == 2) {
- imshow(format("fisherface_%d", i), cgrayscale);
- } else {
- imwrite(format("%s/fisherface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
- }
- }
- // 在一些预定义的步骤中显示或保存图像重建的过程:
- for(int num_component = 0; num_component < min(16, W.cols); num_component++) {
- // 从模型中分割特征向量
- Mat ev = W.col(num_component);
- Mat projection = LDA::subspaceProject(ev, mean, images[0].reshape(1,1));
- Mat reconstruction = LDA::subspaceReconstruct(ev, mean, projection);
- // 归一化
- reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
- // 根据argc判断进行展示或保存操作
- if(argc == 2) {
- imshow(format("fisherface_reconstruction_%d", num_component), reconstruction);
- } else {
- imwrite(format("%s/fisherface_reconstruction_%d.png", output_folder.c_str(), num_component), reconstruction);
- }
- }
- // 如果没有写入输出文件夹,则等待键盘输入
- if(argc == 2) {
- waitKey(0);
- }
- return 0;
- }
②编译过程:
CMakeLists.txt如下:
- cmake_minimum_required(VERSION 3.24) # 指定 cmake的 最小版本
- project(test) # 设置项目名称
-
- find_package(Opencv REQUIRED)
- INCLUDE_DIRECTORIES(${OpenCV_INCLUDE_DIRS})
- #add_executable(eigenfaces_demo eigenfaces.cpp) # 生成可执行文件
- #target_link_libraries(eigenfaces_demo ${OpenCV_LIBS} ) # 设置target需要链接的库
- add_executable(fisherfaces_demo fisherfaces.cpp) # 生成可执行文件
- target_link_libraries(fisherfaces_demo ${OpenCV_LIBS} ) # 设置target需要链接的库
- mkdir build
-
- cd build
-
- cmake ..
-
- cd ..
-
- mingw32-make
③运行及结果展示:
./fisherfaces_demo.exe ./dir.txt ./Fisherfaces_Result

特征图:

重建过程:

均值图:

未完待续!