【跟月影学可视化】学习笔记。
物理学上,噪声指一切不规则的信号(不一定要是声音),比如电磁噪声,热噪声,无线电传输时的噪声,激光器噪声,光纤通信噪声,照相机拍摄图片时画面的噪声等。
我们知道随机数是离散的,如果对离散的随机点进行插值,可以让每个点之间的值连续过渡,然后使用 smoothstep 或者平滑的三次样条来插值,就可以形成一条连续平滑的随机曲线。
对离散的随机值进行插值又被称为插值噪声(Value Noise
)。缺点:它的值的梯度不均匀。最直观的表现就是,二维噪声图像有明显的“块状”特点,不够平滑。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>如何实现噪声函数title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
// 随机函数
float random (float x) {
return fract(sin(x * 1243758.5453123));
}
void main() {
vec2 st = vUv - vec2(0.5);
st *= 10.0;
float i = floor(st.x);
float f = fract(st.x);
// d直接等于随机函数返回值,这样d不连续
// float d = random(i);
// 线段的首尾就会连起来,得到一段连续的折线。
// float d = mix(random(i), random(i + 1.0), f);
// 下面两种都得到一条连续并且平滑的曲线
// float d = mix(random(i), random(i + 1.0), smoothstep(0.0, 1.0, f));
float d = mix(random(i), random(i + 1.0), f * f * (3.0 - 2.0 * f));
gl_FragColor.rgb = (smoothstep(st.y - 0.05, st.y, d) - smoothstep(st.y, st.y + 0.05, d)) * vec3(1.0);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
script>
body>
html>
在 2D 中,除了在一条线的两点(fract(x) 和 fract(x)+1.0)
中插值,我们将在一个平面上的方形的四角(fract(st), fract(st)+vec2(1.,0.), fract(st)+vec2(0.,1.) 和 fract(st)+vec2(1.,1.))
中插值。https://thebookofshaders.com/11/?lan=ch
把 st 与方形区域的四个顶点(对应四个向量)做插值,这样就能得到二维噪声。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>二维噪声title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
float random (vec2 st) {
return fract(sin(dot(st.xy, vec2(12.9898,78.233)))*43758.5453123);
}
// 二维噪声,对st与方形区域的四个顶点插值
highp float noise(vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);
vec2 u = f * f * (3.0 - 2.0 * f);
return mix( mix( random( i + vec2(0.0,0.0) ),
random( i + vec2(1.0,0.0) ), u.x),
mix( random( i + vec2(0.0,1.0) ),
random( i + vec2(1.0,1.0) ), u.x), u.y);
}
void main() {
vec2 st = vUv * 20.0;
gl_FragColor.rgb = vec3(noise(st));
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
script>
body>
html>
结合噪声和距离场,来实现类似于水滴滚过物体表面的效果。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>实现类似于水滴滚过物体表面的效果title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
uniform float uTime;
float random (vec2 st) {
return fract(sin(dot(st.xy, vec2(12.9898,78.233)))*43758.5453123);
}
highp float noise(vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);
vec2 u = f * f * (3.0 - 2.0 * f);
return mix( mix( random( i + vec2(0.0,0.0) ),
random( i + vec2(1.0,0.0) ), u.x),
mix( random( i + vec2(0.0,1.0) ),
random( i + vec2(1.0,1.0) ), u.x), u.y);
}
void main() {
vec2 st = mix(vec2(-10, -10), vec2(10, 10), vUv);
float d = distance(st, vec2(0));
d *= noise(uTime + st);
d = smoothstep(0.0, 1.0, d) - step(1.0, d);
gl_FragColor.rgb = vec3(d);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
function update(t) {
renderer.uniforms.uTime = t / 1000;
requestAnimationFrame(update);
}
update(0);
script>
body>
html>
使用不同的距离场构造方式,加上旋转噪声,构造出类似于木头的条纹。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>实现类似于木头的条纹title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
uniform float uTime;
float random (vec2 st) {
return fract(sin(dot(st.xy, vec2(12.9898,78.233)))*43758.5453123);
}
highp float noise(vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);
vec2 u = f * f * (3.0 - 2.0 * f);
return mix( mix( random( i + vec2(0.0,0.0) ),
random( i + vec2(1.0,0.0) ), u.x),
mix( random( i + vec2(0.0,1.0) ),
random( i + vec2(1.0,1.0) ), u.x), u.y);
}
float lines(in vec2 pos, float b){
float scale = 10.0;
pos *= scale;
return smoothstep(0.0, 0.5 + b * 0.5, abs((sin(pos.x * 3.1415) + b * 2.0)) * 0.5);
}
vec2 rotate(vec2 v0, float ang) {
float sinA = sin(ang);
float cosA = cos(ang);
mat3 m = mat3(cosA, -sinA, 0, sinA, cosA, 0, 0, 0, 1);
return (m * vec3(v0, 1.0)).xy;
}
void main() {
vec2 st = vUv.yx * vec2(10.0, 3.0);
st = rotate(st, noise(st));
float d = lines(st, 0.5);
gl_FragColor.rgb = 1.0 - vec3(d);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
function update(t) {
renderer.uniforms.uTime = t / 1000;
requestAnimationFrame(update);
}
update(0);
script>
body>
html>
插值噪声的缺点可以使用另一种噪声算法来解决,梯度噪声是对随机的二维向量来插值,而不是一维的随机数。这样我们就能够获得更加平滑的噪声效果。
可以参考这个例子:https://www.shadertoy.com/view/XdXGW8
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>梯度噪声title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
vec2 random2(vec2 st){
st = vec2( dot(st,vec2(127.1,311.7)), dot(st,vec2(269.5,183.3)) );
return -1.0 + 2.0 * fract(sin(st) * 43758.5453123);
}
// Gradient Noise by Inigo Quilez - iq/2013
// https://www.shadertoy.com/view/XdXGW8
float noise(vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);
vec2 u = f * f * (3.0 - 2.0 * f);
return mix( mix( dot( random2(i + vec2(0.0,0.0) ), f - vec2(0.0,0.0) ),
dot( random2(i + vec2(1.0,0.0) ), f - vec2(1.0,0.0) ), u.x),
mix( dot( random2(i + vec2(0.0,1.0) ), f - vec2(0.0,1.0) ),
dot( random2(i + vec2(1.0,1.0) ), f - vec2(1.0,1.0) ), u.x), u.y
);
}
void main() {
vec2 st = vUv * 20.0;
gl_FragColor.rgb = vec3(0.5 * noise(st) + 0.5);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
script>
body>
html>
Smooth HSV :https://www.shadertoy.com/view/MsS3Wc
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>用噪声实现云雾效果title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
// Function from Iñigo Quiles
// https://www.shadertoy.com/view/MsS3Wc
vec3 hsb2rgb(vec3 c){
vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0), 6.0)-3.0)-1.0, 0.0, 1.0);
rgb = rgb * rgb * (3.0 - 2.0 * rgb);
return c.z * mix(vec3(1.0), rgb, c.y);
}
float random (vec2 st) {
return fract(sin(dot(st.xy, vec2(12.9898,78.233)))*43758.5453123);
}
highp float noise(vec2 st) {
vec2 i = floor(st);
vec2 f = fract(st);
vec2 u = f * f * (3.0 - 2.0 * f);
return mix( mix( random( i + vec2(0.0,0.0) ),
random( i + vec2(1.0,0.0) ), u.x),
mix( random( i + vec2(0.0,1.0) ),
random( i + vec2(1.0,1.0) ), u.x), u.y
);
}
#define OCTAVES 6
float mist(vec2 st) {
//Initial values
float value = 0.0;
float amplitude = 0.5;
// Loop of octaves
for(int i = 0; i < OCTAVES; i++) {
value += amplitude * noise(st);
st *= 2.0;
amplitude *= 0.5;
}
return value;
}
uniform float uTime;
void main() {
vec2 st = vUv;
st.x += 0.1 * uTime;
// gl_FragColor.rgb = vec3(mist(st));
gl_FragColor.rgb = hsb2rgb(vec3 (mist(st), 1.0, 1.0));
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.uniforms.uTime = 0.0;
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
function update(t) {
renderer.uniforms.uTime = t / 1000;
requestAnimationFrame(update);
}
update(0);
script>
body>
html>
Simplex Noise 是 Ken Perlin 在 2001 年的 Siggraph 会议上展示的 Simplex Noise 算法。它有更低的计算复杂度和更少的乘法运算,并且可以用更少的计算量达到更高的维度,而且它制造出的噪声非常自然。
Simplex Noise 与插值噪声以及梯度噪声的不同之处在于,它不是对四边形进行插值,而是对三角网格进行插值。
如下图:
该算法的优点:
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Simplex Noisetitle>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }
//
// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License :
// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
float noise(vec2 v) {
// Precompute values for skewed triangular grid
const vec4 C = vec4(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5*(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439);
// 1.0 / 41.0
// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other two corners (x1, x2)
vec2 i1 = vec2(0.0);
i1 = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - i1;
vec2 x2 = x0.xy + C.zz;
// Do some permutations to avoid
// truncation effects in permutation
i = mod289(i);
vec3 p = permute(permute( i.y + vec3(0.0, i1.y, 1.0)) + i.x + vec3(0.0, i1.x, 1.0 ));
vec3 m = max(0.5 - vec3(
dot(x0,x0),
dot(x1,x1),
dot(x2,x2)
), 0.0);
m = m*m ;
m = m*m ;
// Gradients:
// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple
// of 41 (41*7 = 287)
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a0*a0 + h*h);
m *= 1.79284291400159 - 0.85373472095314 * (a0*a0+h*h);
// Compute final noise value at P
vec3 g = vec3(0.0);
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * vec2(x1.x,x2.x) + h.yz * vec2(x1.y,x2.y);
return 130.0 * dot(m, g);
}
void main() {
vec2 st = vUv * 20.0;
gl_FragColor.rgb = vec3(0.5 * noise(st) + 0.5);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
script>
body>
html>
网格噪声就是将噪声与网格结合使用的一种纹理生成技术。目前被广泛应用的程序化纹理技术,用来生成随机网格类的视觉效果,可以用来模拟物体表面的晶格、晶体生长、细胞、微生物等等有趣的效果。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>网格噪声title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
uniform float uTime;
vec2 random2(vec2 st){
st = vec2( dot(st,vec2(127.1,311.7)), dot(st,vec2(269.5,183.3)) );
return fract(sin(st) * 43758.5453123);
}
void main() {
vec2 st = vUv * 10.0;
float d = 1.0;
vec2 i_st = floor(st);
vec2 f_st = fract(st);
vec2 p = random2(i_st);
d = distance(f_st, p);
gl_FragColor.rgb = vec3(d);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
script>
body>
html>
上面每个网格是独立的,并且界限分明,可以计算特征点到当前网格的距离,以及计算它到周围相邻的 8 个网格的距离,然后取最小值去实现边界过渡更圆滑效果。
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>网格噪声title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
// 圆滑版本
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
uniform float uTime;
vec2 random2(vec2 st){
st = vec2(dot(st,vec2(127.1,311.7)), dot(st,vec2(269.5,183.3)));
return fract(sin(st) * 43758.5453123);
}
void main() {
vec2 st = vUv * 10.0;
float d = 1.0;
vec2 i_st = floor(st);
vec2 f_st = fract(st);
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
vec2 neighbor = vec2(float(i), float(j));
vec2 p = random2(i_st + neighbor);
p = 0.5 + 0.5 * sin(uTime + 6.2831 * p);
d = min(d, distance(f_st, neighbor + p));
}
}
gl_FragColor.rgb = vec3(d) + step(d, 0.03);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.uniforms.uTime = 0.0;
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
script>
body>
html>
基于这个圆滑版本我们实现一下细胞动画效果
DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>网格噪声模拟生物细胞title>
<style>
canvas {
border: 1px dashed salmon;
}
style>
head>
<body>
<canvas width="512" height="512">canvas>
<script src="./common/lib/gl-renderer.js">script>
<script>
const vertex = `
attribute vec2 a_vertexPosition;
attribute vec2 uv;
varying vec2 vUv;
void main() {
gl_PointSize = 1.0;
vUv = uv;
gl_Position = vec4(a_vertexPosition, 1, 1);
}
`;
const fragment = `
#ifdef GL_ES
precision highp float;
#endif
varying vec2 vUv;
uniform float uTime;
vec2 random2(vec2 st){
st = vec2(dot(st,vec2(127.1,311.7)), dot(st,vec2(269.5,183.3)));
return fract(sin(st) * 43758.5453123);
}
void main() {
vec2 st = vUv * 10.0;
float d = 1.0;
vec2 i_st = floor(st);
vec2 f_st = fract(st);
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
vec2 neighbor = vec2(float(i), float(j));
vec2 p = random2(i_st + neighbor);
p = 0.5 + 0.5 * sin(uTime + 6.2831 * p);
d = min(d, distance(f_st, neighbor + p));
}
}
gl_FragColor.rgb = vec3(d) + step(d, 0.03);
gl_FragColor.a = 1.0;
}
`;
const canvas = document.querySelector("canvas");
const renderer = new GlRenderer(canvas);
const program = renderer.compileSync(fragment, vertex);
renderer.useProgram(program);
renderer.uniforms.uTime = 0.0;
renderer.setMeshData([
{
positions: [
[-1, -1],
[-1, 1],
[1, 1],
[1, -1],
],
attributes: {
uv: [
[0, 0],
[0, 1],
[1, 1],
[1, 0],
],
},
cells: [
[0, 1, 2],
[2, 0, 3],
],
},
]);
renderer.render();
function update(t) {
renderer.uniforms.uTime = t / 1000;
requestAnimationFrame(update);
}
update(0);
script>
body>
html>
网格噪声(Cellular Noise):https://thebookofshaders.com/12/?lan=ch
演示例子:https://thebookofshaders.com/edit.php#12/vorono-01.frag