• 【一】情感对话 Towards Emotional Support Dialog Systems 论文阅读


    【一】情感支撑对话论文最近进展 Emotion Support Conversation

    今天给大家介绍一下Towards Emotional Support Dialog Systems这篇由黄老师团队发表在2021 ACL的数据集。

    相关论文综述整理指路 -> 点这里

    主要分成以下几个部分进行介绍:

    • 研究背景
    • 实例介绍
    • ESC中的三阶段
    • 数据收集
    • 实验结果
    • 总结
    研究背景
    • 全球精神障碍疾病负担沉重,新冠疫情加重精神心理问题[1]
      目前全球约有近10亿人,患有精神障碍,其中每8个人中就有一位精神障碍患者[1];
      1990年到2019年,全球患病人数增长48.1%
    • 新冠疫情之后,抑郁症患者激增5300万,高达27.6%[2]。
    • 按年龄、性别分组的2020年新冠肺炎大流行前后患病率变化情况[2]

    在这里插入图片描述

    • 全球精神卫生系统及社会支持力量普遍薄弱。
    • 抑郁症,焦虑的精神障碍,疾病,轻者会影响生活中则会威胁生命,然而由于经济文化等原因,心理疾病在很多国家并未受到重视。
    • 在低收入和中等收入国家大约76~85%的精神患者没有接收很好的治疗[3]。
    • 社会对其的关注程度不大,拥有专业知识的心理咨询师目前任然处于较大缺口。
    • 新冠疫情的发生,给心理疾病的诊断和治疗带来了巨大的挑战。

    实例介绍

    在这里插入图片描述
    用户一开始不会直接显式地表达出自己有什么问题,比如例子里说的学校因为疫情封校了。

    直接用对话预料训练的,可能会导致safe response等问题;所以系统首先应该去进行询问,进行explore;同样,第二句话,用户只是描述了一个情景,但是并没有说他的隐藏的意图是什么,这个时候如果系统能够推理出更多信息的话,那就可以很好地理解用户,并且帮助做一些疏导;

    因此:

    • 为了确定 help-seeker 痛苦的原因,supporter 首先探索 help-seeker 的问题。在了解 help-seeker 的情况后,supporter 可以通过各种技巧(如自我表露 Self-disclosure、表达自我感受 Reflection of Feelings 等)表达理解和同理心,以缓解求助者的挫败感。
    • 另外 supporter 如果只能安慰,那么将不能实质的帮助 help-seeker,因此 supporter 需要提出建议,帮助 help-seeker 解决问题。
    • 文章提出了 Emotional Support Conversation (ESC)task,还提供了专用于 ES 的数据集。ESC 框架提出了三个阶段(Exploration,Comforting 和 Action),其中每个阶段包含几个支持策略(或技能)。

    ESC中的三阶段

    ESC 有三个阶段,如图所示。

    文章将 ES 分为三个阶段:exploration(探索 help-seeker 的问题),comforting(安慰) 和 action(提供建议解决问题)。这三个阶段并不一定按照顺序执行。
    在这里插入图片描述

    数据集的收集

    文章通过大量设计并众包的形式制作了数据集:ESConv。Supporter 主要包括培训如何交流,如何根据策略回复,并且需要在对话之后进行打分。Help-seeker 需要填写调查问卷来指定自己的困境,并且在交流过程中需要对自己的情绪压力是否缓解进行打分,并在结束之后再填写一份调查问卷。

    总共收集到了1,053 条对话数据,如表所示
    在这里插入图片描述

    提供了注释的统计数据
    在这里插入图片描述

    策略可视化

    图左侧是数据集中的策略分布,右侧是机器人交互时采用的策略的分布,两个分布显示了模型很好的学习到了数据集的策略分析

    在这里插入图片描述

    实验结果

    自动评价指标V.S.人工评价指标

    在这里插入图片描述

    总结

    这篇文章的出发点还是挺新颖的,尤其是在现在大家都厌倦了的疫情的情况之下,其实心理问题已经成为了各个国家乃至全世界最令人关注的一个问题,包括从研究背景当中其实我们可以分析出来,在疫情爆发之后越来越多的人,无论是男性女性,老人小孩,其实心理的抑郁程度都比之前大了很多,比如经济的萧条,裁员的压力,毕业的学术要求,疫情封校等等。

    因此如果能够真正将情感支撑机器人进行落地的话,对于心理咨询场景来说,将会有一个很大的进步,但是这也是目前工业界非常困难的一个点。如何进行落地,解决消极回复或者伦理问题是非常关键并且重要的,因此这个方向,个人认为在研究阶段是非常值得挑战并且深入的。至于真正的应用,还是有很长的一段路需要脚踏实地。

    参考文献
    [1] Global burd en of 369 diseases and injuries in 204 countries and territories , 1990-2019 : a systematic analysis for the Global Burd en of Disease Study 2019
    [2] Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic。

    更多有趣MRC文章见:利用逆向思维的机器阅读理解。
    相关文献
    Bi-directional Cognitive Thinking Network for Machine Reading Comprehension 论文阅读
    证据推理网络。
    Hybrid Curriculum Learning for Emotion Recognition in Conversation
    BERT用于文本分类方法

  • 相关阅读:
    数据结构与算法(三)——递归
    接口复习总结
    聚类算法模型评价指标
    我的创作纪念日--AI小怪兽打怪进阶路
    堆料,新能源汽车走上智能手机老路
    虹科Pico汽车示波器 | 免拆诊断案例 | 2016款保时捷911 GT3 RS车发动机异响
    ASM对匿名内部类、Lambda及方法引用的Hook研究
    maven的详细下载和安装
    大模型的人工智能能否超越人类?
    手机拍照模糊怎么办?拍摄低像素照片如何修复清晰?
  • 原文地址:https://blog.csdn.net/ganxiwu9686/article/details/127689292