You are given an integer array nums consisting of n elements, and an integer k.
Find a contiguous subarray whose length is equal to k that has the maximum average value and return this value. Any answer with a calculation error less than 10-5 will be accepted.
Example 1:
Input: nums = [1,12,-5,-6,50,3], k = 4 Output: 12.75000 Explanation: Maximum average is (12 - 5 - 6 + 50) / 4 = 51 / 4 = 12.75
Example 2:
Input: nums = [5], k = 1 Output: 5.00000
Constraints:
n == nums.length1 <= k <= n <= 105-104 <= nums[i] <= 104本质就是求数组里长度为k的字数组的最大值,是一道简单的prefix sum / sliding window题。刚开始又给想复杂了……其实可以直接算sum,不需要往window里加加减减。
sliding window就是一个window里放k个元素,每次remove掉第一个,加上新的,一个for loop遍历完所有。刚开始写的时候max初始化成了double.min,这时候第二个for loop就cover不到k==n的corner case,导致结果出错。
Runtime: 15 ms, faster than 23.03% of Java online submissions for Maximum Average Subarray I.
Memory Usage: 107.5 MB, less than 24.36% of Java online submissions for Maximum Average Subarray I.
- class Solution {
- public double findMaxAverage(int[] nums, int k) {
- double sum = 0;
- for (int i = 0; i < k; i++) {
- sum += nums[i];
- }
- double max = sum;
- for (int i = k; i < nums.length; i++) {
- sum -= nums[i - k];
- sum += nums[i];
- max = Math.max(max, sum);
- }
- return max / k;
- }
- }
prefix sum的做法就是先一个for loop计算出当前所有元素的和,然后再一个for loop对和进行相减,取最大。其中也有一些小坑需要注意,就是max需要初始化为sums[k - 1],然后从i = k遍历到nums.length。
Runtime: 15 ms, faster than 23.03% of Java online submissions for Maximum Average Subarray I.
Memory Usage: 108 MB, less than 20.27% of Java online submissions for Maximum Average Subarray I.
- class Solution {
- public double findMaxAverage(int[] nums, int k) {
- int[] sums = new int[nums.length];
- sums[0] = nums[0];
- for (int i = 1; i < nums.length; i++) {
- sums[i] = sums[i - 1] + nums[i];
- }
- double result = sums[k - 1];
- for (int i = k; i < nums.length; i++) {
- double sum = sums[i] - sums[i - k];
- result = Math.max(sum, result);
- }
- return result / k;
- }
- }