P ( Ω ) = 1 P ( A ) ≥ 0 , ∀ A ∈ 2 Ω P ( A ∪ B ) = P ( A ) + P ( B ) , ∀ A , B ∈ 2 Ω , A ∩ B = ∅ P(Ω)=1P(A)≥0,∀A∈2ΩP(A∪B)=P(A)+P(B),∀A,B∈2Ω,A∩B=∅ P(Ω)=1P(A)≥0,∀A∈2ΩP(A∪B)=P(A)+P(B),∀A,B∈2Ω,A∩B=∅
证明: \; ∵ A ⊆ B \because A \subseteq B ∵A⊆B
\quad\qquad ∴ ∃ S \therefore \exist S ∴∃S,满足 B = A ∪ S B = A \cup S B=A∪S,其中 A ∩ S = ∅ A \cap S = \emptyset A∩S=∅
\quad\qquad 根据公理(3)可得, P ( B ) = P ( A ∪ S ) = P ( A ) + P ( S ) P(B) = P(A \cup S) = P(A) + P(S) P(B)=P(A∪S)=P(A)+P(S)
\quad\qquad 由公理(2)可知 P ( S ) ≥ 0 P(S) \ge 0 P(S)≥0,
\quad\qquad
∴
P
(
B
)
=
P
(
A
)
+
P
(
S
)
≥
P
(
A
)
\therefore P(B) = P(A) + P(S) \ge P(A)
∴P(B)=P(A)+P(S)≥P(A) ,即
P
(
A
)
≤
P
(
B
)
■
P(A) \le P(B) \qquad \blacksquare
P(A)≤P(B)■
证明: \; 设 J J J 为 A , B A, B A,B 的交集,即 J = A ∩ B J = A \cap B J=A∩B,则有 J ⊆ A J \subseteq A J⊆A 且 J ⊆ B J \subseteq B J⊆B
\quad\qquad 根据性质 A ⊆ B ⟹ P ( A ) ≤ P ( B ) A \subseteq B \implies P(A) \leq P(B) A⊆B⟹P(A)≤P(B) 可得:
\quad\qquad P ( J ) = P ( A ∩ B ) ≤ P ( A ) P(J) = P(A \cap B) \leq P(A) P(J)=P(A∩B)≤P(A);
\quad\qquad P ( J ) = P ( A ∩ B ) ≤ P ( B ) P(J) = P(A \cap B) \leq P(B) P(J)=P(A∩B)≤P(B);
\quad\qquad
综合上面两个等式可得,
P
(
A
∩
B
)
≤
min
(
P
(
A
)
,
P
(
B
)
)
■
P(A \cap B) \leq \min(P(A), P(B)) \qquad \blacksquare
P(A∩B)≤min(P(A),P(B))■
证明: \; 设 B ′ ⊆ B B\rq \subseteq B B′⊆B, A ∩ B ′ = ∅ A \cap B\rq = \emptyset A∩B′=∅,且 A ∪ B = A ∪ B ′ A \cup B = A \cup B\rq A∪B=A∪B′,
\quad\qquad ∵ A ∩ B ′ = ∅ \because A \cap B\rq = \emptyset ∵A∩B′=∅
\quad\qquad ∴ \therefore ∴ 根据公理(3)可得: P ( A ∪ B ) = P ( A ∪ B ′ ) = P ( A ) + P ( B ′ ) P(A \cup B) = P(A \cup B\rq) = P(A)+P(B\rq) P(A∪B)=P(A∪B′)=P(A)+P(B′)
\quad\qquad ∵ B ′ ⊆ B \because B\rq \subseteq B ∵B′⊆B
\quad\qquad ∴ \therefore ∴ 根据性质(2)可得: P ( B ′ ) ≤ P ( B ) P(B\rq) \leq P(B) P(B′)≤P(B)
\quad\qquad ∴ P ( A ) + P ( B ′ ) ≤ P ( A ) + P ( B ) \therefore P(A)+P(B\rq) \leq P(A)+P(B) ∴P(A)+P(B′)≤P(A)+P(B)
\quad\qquad
∴
P
(
A
∪
B
)
≤
P
(
A
)
+
P
(
B
)
■
\therefore P(A \cup B) \leq P(A)+P(B) \qquad \blacksquare
∴P(A∪B)≤P(A)+P(B)■
证明: \; ∵ Ω = ( Ω − A ) ∪ A , ( Ω − A ) ∩ A = ∅ \because \Omega = (\Omega - A) \cup A, (\Omega - A) \cap A = \emptyset ∵Ω=(Ω−A)∪A,(Ω−A)∩A=∅
\quad\qquad ∴ P ( Ω ) = P ( ( Ω − A ) ∪ A ) = P ( Ω − A ) + P ( A ) \therefore P(\Omega) = P((\Omega - A) \cup A) = P(\Omega - A) + P(A) ∴P(Ω)=P((Ω−A)∪A)=P(Ω−A)+P(A) (公理3)
\quad\qquad ∵ P ( Ω ) = 1 \because P(\Omega) = 1 ∵P(Ω)=1 (公理1)
\quad\qquad ∴ 1 = P ( Ω − A ) + P ( A ) \therefore 1 = P(\Omega - A) + P(A) ∴1=P(Ω−A)+P(A)
\quad\qquad
交换位置得
P
(
Ω
−
A
)
=
1
−
P
(
A
)
■
P(\Omega - A) = 1 - P(A) \qquad \blacksquare
P(Ω−A)=1−P(A)■
证明: \; ∵ A 1 , … , A k \because A_1, \dotsc, A_k ∵A1,…,Ak 是一组不相交的事件
\quad\qquad ∴ P ( ⋃ i A i ) = ∑ i P ( A i ) \therefore P(\bigcup_i A_i) = \sum_i P(A_i) ∴P(⋃iAi)=∑iP(Ai) (公理3)
\quad\qquad ∵ ⋃ i = 1 k A i = Ω \because \bigcup^k_{i=1} A_i = \Omega ∵⋃i=1kAi=Ω
\quad\qquad ∴ P ( Ω ) = ∑ i P ( A i ) \therefore P(\Omega) = \sum_i P(A_i) ∴P(Ω)=∑iP(Ai)
\quad\qquad ∵ P ( Ω ) = 1 \because P(\Omega) = 1 ∵P(Ω)=1 (公理1)
\quad\qquad ∴ ∑ i P ( A i ) = 1 ■ \therefore \sum_i P(A_i) = 1 \qquad \blacksquare ∴∑iP(Ai)=1■