• 【附录01】概率基本性质和法则推导证明


    【附录】概率基本性质与法则的推导证明

    在这里插入图片描述

    公理

    P ( Ω ) = 1 P ( A ) ≥ 0 , ∀ A ∈ 2 Ω P ( A ∪ B ) = P ( A ) + P ( B ) , ∀ A , B ∈ 2 Ω , A ∩ B = ∅ P(Ω)=1P(A)0,A2ΩP(AB)=P(A)+P(B),A,B2Ω,AB= P(Ω)=1P(A)0,A2ΩP(AB)=P(A)+P(B),A,B2Ω,AB=


    1. A ⊆ B    ⟹    P ( A ) ≤ P ( B ) A \subseteq B \implies P(A) \leq P(B) ABP(A)P(B)

    证明:    \; ∵ A ⊆ B \because A \subseteq B AB

    \quad\qquad ∴ ∃ S \therefore \exist S S,满足 B = A ∪ S B = A \cup S B=AS,其中 A ∩ S = ∅ A \cap S = \emptyset AS=

    \quad\qquad 根据公理(3)可得, P ( B ) = P ( A ∪ S ) = P ( A ) + P ( S ) P(B) = P(A \cup S) = P(A) + P(S) P(B)=P(AS)=P(A)+P(S)

    \quad\qquad 由公理(2)可知 P ( S ) ≥ 0 P(S) \ge 0 P(S)0,

    \quad\qquad ∴ P ( B ) = P ( A ) + P ( S ) ≥ P ( A ) \therefore P(B) = P(A) + P(S) \ge P(A) P(B)=P(A)+P(S)P(A) ,即 P ( A ) ≤ P ( B ) ■ P(A) \le P(B) \qquad \blacksquare P(A)P(B)


    2. P ( A ∩ B ) ≤ min ⁡ ( P ( A ) , P ( B ) ) P(A \cap B) \leq \min(P(A), P(B)) P(AB)min(P(A),P(B))

    证明:    \; J J J A , B A, B A,B 的交集,即 J = A ∩ B J = A \cap B J=AB,则有 J ⊆ A J \subseteq A JA J ⊆ B J \subseteq B JB

    \quad\qquad 根据性质 A ⊆ B    ⟹    P ( A ) ≤ P ( B ) A \subseteq B \implies P(A) \leq P(B) ABP(A)P(B) 可得:

    \quad\qquad P ( J ) = P ( A ∩ B ) ≤ P ( A ) P(J) = P(A \cap B) \leq P(A) P(J)=P(AB)P(A);

    \quad\qquad P ( J ) = P ( A ∩ B ) ≤ P ( B ) P(J) = P(A \cap B) \leq P(B) P(J)=P(AB)P(B);

    \quad\qquad 综合上面两个等式可得, P ( A ∩ B ) ≤ min ⁡ ( P ( A ) , P ( B ) ) ■ P(A \cap B) \leq \min(P(A), P(B)) \qquad \blacksquare P(AB)min(P(A),P(B))


    3. P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A \cup B) \leq P(A) + P(B) P(AB)P(A)+P(B)

    证明:    \; B ′ ⊆ B B\rq \subseteq B BB A ∩ B ′ = ∅ A \cap B\rq = \emptyset AB=,且 A ∪ B = A ∪ B ′ A \cup B = A \cup B\rq AB=AB

    \quad\qquad ∵ A ∩ B ′ = ∅ \because A \cap B\rq = \emptyset AB=

    \quad\qquad ∴ \therefore 根据公理(3)可得: P ( A ∪ B ) = P ( A ∪ B ′ ) = P ( A ) + P ( B ′ ) P(A \cup B) = P(A \cup B\rq) = P(A)+P(B\rq) P(AB)=P(AB)=P(A)+P(B)

    \quad\qquad ∵ B ′ ⊆ B \because B\rq \subseteq B BB

    \quad\qquad ∴ \therefore 根据性质(2)可得: P ( B ′ ) ≤ P ( B ) P(B\rq) \leq P(B) P(B)P(B)

    \quad\qquad ∴ P ( A ) + P ( B ′ ) ≤ P ( A ) + P ( B ) \therefore P(A)+P(B\rq) \leq P(A)+P(B) P(A)+P(B)P(A)+P(B)

    \quad\qquad ∴ P ( A ∪ B ) ≤ P ( A ) + P ( B ) ■ \therefore P(A \cup B) \leq P(A)+P(B) \qquad \blacksquare P(AB)P(A)+P(B)


    4. P ( Ω − A ) = 1 − P ( A ) P(\Omega - A) = 1 - P(A) P(ΩA)=1P(A)

    证明:    \; ∵ Ω = ( Ω − A ) ∪ A , ( Ω − A ) ∩ A = ∅ \because \Omega = (\Omega - A) \cup A, (\Omega - A) \cap A = \emptyset Ω=(ΩA)A,(ΩA)A=

    \quad\qquad ∴ P ( Ω ) = P ( ( Ω − A ) ∪ A ) = P ( Ω − A ) + P ( A ) \therefore P(\Omega) = P((\Omega - A) \cup A) = P(\Omega - A) + P(A) P(Ω)=P((ΩA)A)=P(ΩA)+P(A) (公理3)

    \quad\qquad ∵ P ( Ω ) = 1 \because P(\Omega) = 1 P(Ω)=1 (公理1)

    \quad\qquad ∴ 1 = P ( Ω − A ) + P ( A ) \therefore 1 = P(\Omega - A) + P(A) 1=P(ΩA)+P(A)

    \quad\qquad 交换位置得 P ( Ω − A ) = 1 − P ( A ) ■ P(\Omega - A) = 1 - P(A) \qquad \blacksquare P(ΩA)=1P(A)


    5. 全概率法则

    证明:    \; ∵ A 1 , … , A k \because A_1, \dotsc, A_k A1,,Ak 是一组不相交的事件

    \quad\qquad ∴ P ( ⋃ i A i ) = ∑ i P ( A i ) \therefore P(\bigcup_i A_i) = \sum_i P(A_i) P(iAi)=iP(Ai) (公理3)

    \quad\qquad ∵ ⋃ i = 1 k A i = Ω \because \bigcup^k_{i=1} A_i = \Omega i=1kAi=Ω

    \quad\qquad ∴ P ( Ω ) = ∑ i P ( A i ) \therefore P(\Omega) = \sum_i P(A_i) P(Ω)=iP(Ai)

    \quad\qquad ∵ P ( Ω ) = 1 \because P(\Omega) = 1 P(Ω)=1 (公理1)

    \quad\qquad ∴ ∑ i P ( A i ) = 1 ■ \therefore \sum_i P(A_i) = 1 \qquad \blacksquare iP(Ai)=1

  • 相关阅读:
    更换Eclipse的JDK版本
    新鲜出炉的跨域问题:前端设置credential: ‘include‘,后端不能用‘*‘通配符匹配所有源
    鸿蒙 Stage模型-应用组件-配置、UIAbility
    华为机试 - 面试
    SQL 注入 - http头注入之referer注入
    常用的Lambda操作
    Python机器学习分类算法(一)-- 朴素贝叶斯分类(Naive Bayes Classifier)
    使用protoc编译.proto文件生成go文件
    洛谷 P7018 [CERC2013] Bus
    CentOS 7 - Linux 安装详解
  • 原文地址:https://blog.csdn.net/jarodyv/article/details/127686434