目录
参考:xv6 Kernel-4 Spinlocks_哔哩哔哩_bilibili
自旋锁的结构体
// Mutual exclusion lock. struct spinlock { uint locked; // Is the lock held? // For debugging: char *name; // Name of lock. struct cpu *cpu; // The cpu holding the lock. };
void initlock(struct spinlock *lk, char *name) { lk->name = name; lk->locked = 0; lk->cpu = 0; }伪代码如下
func: if (*lock == 0) // spinlock空闲 { *lock = 1; } else { //spinlock不空闲,循环等待 goto func; }
- 上述的代码必须保证原子性,否则当同一个cpu的两个线程同时满足 *lock == 0,那么两个线程都会拿到spinlock,这肯定是不行的。
- 在xv6中,原子操作指令就是ampswap指令,对应到c语言就是__sync_lock_test_and_set函数来保证原子性。
__sync_synchronize(); 避免编译优化改变代码执行顺序。
// Acquire the lock. // Loops (spins) until the lock is acquired. void acquire(struct spinlock *lk) { push_off(); // disable interrupts to avoid deadlock. if(holding(lk)) panic("acquire"); { //执行原子操作,避免出现并发问题 // On RISC-V, sync_lock_test_and_set turns into an atomic swap: // a5 = 1 // s1 = &lk->locked // amoswap.w.aq a5, a5, (s1) while(__sync_lock_test_and_set(&lk->locked, 1) != 0) ; } // Tell the C compiler and the processor to not move loads or stores // past this point, to ensure that the critical section's memory // references happen strictly after the lock is acquired. // On RISC-V, this emits a fence instruction. __sync_synchronize(); // Record info about lock acquisition for holding() and debugging. lk->cpu = mycpu(); }释放锁:等价于操作lk->locked = 0 ,用__sync_lock_release(&lk->locked);实现。也是原子操作
// Release the lock. void release(struct spinlock *lk) { if(!holding(lk)) // 正常是当前cpu有spinlock, 所以才不会有panic("release"); panic("release"); lk->cpu = 0; //因为随后会释放锁,所以不妨设为空,表示当前没有cpu拿到锁 // Tell the C compiler and the CPU to not move loads or stores // past this point, to ensure that all the stores in the critical // section are visible to other CPUs before the lock is released, // and that loads in the critical section occur strictly before // the lock is released. // On RISC-V, this emits a fence instruction. __sync_synchronize(); { // amoswap 原子操作 // Release the lock, equivalent to lk->locked = 0. // This code doesn't use a C assignment, since the C standard // implies that an assignment might be implemented with // multiple store instructions. // On RISC-V, sync_lock_release turns into an atomic swap: // s1 = &lk->locked // amoswap.w zero, zero, (s1) __sync_lock_release(&lk->locked); } pop_off(); }
// Check whether this cpu is holding the lock. // Interrupts must be off. int holding(struct spinlock *lk) { int r; r = (lk->locked && lk->cpu == mycpu()); //获取当前cpu是否拿到了锁 return r; }
死锁问题:
进程A:键盘打字---产生中断---acquired 等待spinlock----写入数据
进程B:某个调用拿到了spinlock, 等待键盘打字--写入的数据。
------>产生死锁
解决方法:acquire()的时候disable interupt , release的时候,enable interupt
额外的好处:可以让拿到spinlock的线程不会太久。
所以代码的push_off()和pop_off()中分别会打开/关闭中断来避免死锁
void push_off(void) { ... intr_off(); // 关闭中断 ... } void pop_off(void) { ... intr_on(); //打开中断 ... }如果此时有三个调用去执行acquire(),其中一个调用拿到了spinlock, diable中断在执行结束后,会在release的时候去enable中断。查看spinlock的acquire实现(如下面的代码)
可知:如果在release的时候打开了中断,那么其他cpu会立刻拿到spinlock, 且这个时候已经关闭过了中断,然后中断又被打开了,这肯定不行!!!
void acquire(struct spinlock *lk) { push_off(); // disable interrupts to avoid deadlock. if(holding(lk)) panic("acquire"); // 原子操作---等待直到拿到spinlock while(__sync_lock_test_and_set(&lk->locked, 1) != 0) ; ............ }解决方案:加上计数器,实现如下:acquire一次,中断计数就增加(noff变量)
release一次就减1,直到为0才恢复中断(不一定会打开,需要根据,int old = intr_get()的值判断,old == 1代表acquires spinlock之前中断是打开的,反之用完了锁不打开)。
void push_off(void) { int old = intr_get(); // 调用push_off之前 打开了中断 if old != 0 intr_off(); if(mycpu()->noff == 0) // 第一次调用acquire mycpu()->intena = old; //intena保存锁之前的中断状态 mycpu()->noff += 1; } void pop_off(void) { struct cpu *c = mycpu(); if(intr_get()) panic("pop_off - interruptible"); if(c->noff < 1) panic("pop_off"); c->noff -= 1; if(c->noff == 0 && c->intena) //直到aqcuire对应的release次数为0 && 调用push_off之前打开了中断 intr_on(); //打开中断 }