使用NonlinearFactorGraph::saveGraph进行的GraphViz配置选择
struct GTSAM_EXPORT GraphvizFormatting{
/*......*/
};
/**
非线性因子图是由非线性因子导出的非高斯(即非线性因子)图。值结构通常(在SAM中)比向量更一般,例如Rot3或Pose3,它们是非线性流形中的对象。线性化非线性因子图在线性化点处的切向量空间上创建线性因子图。因为切线空间是真正的向量空间,所以配置类型将是线性化因子图中的VectorValues。
*/
/**
* A non-linear factor graph is a graph of non-Gaussian, i.e. non-linear factors,
* which derive from NonlinearFactor. The values structures are typically (in SAM) more general
* than just vectors, e.g., Rot3 or Pose3, which are objects in non-linear manifolds.
* Linearizing the non-linear factor graph creates a linear factor graph on the
* tangent vector space at the linearization point. Because the tangent space is a true
* vector space, the config type will be an VectorValues in that linearized factor graph.
*/
class GTSAM_EXPORT NonlinearFactorGraph: public FactorGraph<NonlinearFactor> {
};
/** Default constructor */
NonlinearFactorGraph() {}
/** Construct from iterator over factors */
template<typename ITERATOR>
NonlinearFactorGraph(ITERATOR firstFactor, ITERATOR lastFactor) : Base(firstFactor, lastFactor) {}
/** Construct from container of factors (shared_ptr or plain objects) */
template<class CONTAINER>
explicit NonlinearFactorGraph(const CONTAINER& factors) : Base(factors) {}
/** Implicit copy/downcast constructor to override explicit template container constructor */
template<class DERIVEDFACTOR>
NonlinearFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
/// Destructor
virtual ~NonlinearFactorGraph() {}
从迭代器拷贝
从容器拷贝(shared_ptr或者纯对象)
用于重写显式模板容器构造函数的隐式复制/向下转换构造函数
/** print */
void print(
const std::string& str = "NonlinearFactorGraph: ",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
/** print errors along with factors*/
void printErrors(const Values& values, const std::string& str = "NonlinearFactorGraph: ",
const KeyFormatter& keyFormatter = DefaultKeyFormatter,
const std::function<bool(const Factor* /*factor*/, double /*whitenedError*/, size_t /*index*/)>&
printCondition = [](const Factor *,double, size_t) {return true;}) const;
/** Test equality */
bool equals(const NonlinearFactorGraph& other, double tol = 1e-9) const;
/// Write the graph in GraphViz format for visualization
void saveGraph(std::ostream& stm, const Values& values = Values(),
const GraphvizFormatting& graphvizFormatting = GraphvizFormatting(),
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/**
* Write the graph in GraphViz format to file for visualization.
*
* This is a wrapper friendly version since wrapped languages don't have
* access to C++ streams.
*/
void saveGraph(const std::string& file, const Values& values = Values(),
const GraphvizFormatting& graphvizFormatting = GraphvizFormatting(),
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
0.5 ∑ i ( h i ( X i ) − z ) 2 σ 2 0.5\sum_i (h_i(X_i)-z)^2 \sigma^2 0.5∑i(hi(Xi)−z)2σ2
/** unnormalized error, \f$ 0.5 \sum_i (h_i(X_i)-z)^2/\sigma^2 \f$ in the most common case */
double error(const Values& values) const;
/** Unnormalized probability. O(n) */
double probPrime(const Values& values) const;
/**
* Create a symbolic factor graph
*/
boost::shared_ptr<SymbolicFactorGraph> symbolic() const;
/**
* Compute a fill-reducing ordering using COLAMD.
*/
Ordering orderingCOLAMD() const;
在COLAMD计算填充减少顺序
/**
* Compute a fill-reducing ordering with constraints using CCOLAMD
*
* @param constraints is a map of Key->group, where 0 is unconstrained, and higher
* group numbers are further back in the ordering. Only keys with nonzero group
* indices need to appear in the constraints, unconstrained is assumed for all
* other variables
*/
Ordering orderingCOLAMDConstrained(const FastMap<Key, int>& constraints) const;
使用CCOLAMD计算具有约束的填充减少排序
约束是Key->group的映射,其中0是无约束的,更高的组号在排序中更靠后。仅具有非零组索引的键需要出现在约束中,所有其他变量都假定为无约束
/// Linearize a nonlinear factor graph
boost::shared_ptr<GaussianFactorGraph> linearize(const Values& linearizationPoint) const;
/// typdef for dampen functions used below
typedef std::function<void(const boost::shared_ptr<HessianFactor>& hessianFactor)> Dampen;
将其预分配并线性化为HessianFactor,在构建新图时避免了许多malloc和指针间接,因此在密集解决方案适合您的问题时非常有用。
可选的lambda函数可用于在填充的Hessian上应用阻尼。
没有利用并行性,因为所有因素都写入同一内存。
/**
* Instead of producing a GaussianFactorGraph, pre-allocate and linearize directly
* into a HessianFactor. Avoids the many mallocs and pointer indirection in constructing
* a new graph, and hence useful in case a dense solve is appropriate for your problem.
* An optional lambda function can be used to apply damping on the filled Hessian.
* No parallelism is exploited, because all the factors write in the same memory.
*/
boost::shared_ptr<HessianFactor> linearizeToHessianFactor(
const Values& values, const Dampen& dampen = nullptr) const;
如果Ordering给定的话
/**
* Instead of producing a GaussianFactorGraph, pre-allocate and linearize directly
* into a HessianFactor. Avoids the many mallocs and pointer indirection in constructing
* a new graph, and hence useful in case a dense solve is appropriate for your problem.
* An ordering is given that still decides how the Hessian is laid out.
* An optional lambda function can be used to apply damping on the filled Hessian.
* No parallelism is exploited, because all the factors write in the same memory.
*/
boost::shared_ptr<HessianFactor> linearizeToHessianFactor(
const Values& values, const Ordering& ordering, const Dampen& dampen = nullptr) const;
线性化并一次求解
/// Linearize and solve in one pass.
/// Calls linearizeToHessianFactor, densely solves the normal equations, and updates the values.
Values updateCholesky(const Values& values,
const Dampen& dampen = nullptr) const;
/// Linearize and solve in one pass.
/// Calls linearizeToHessianFactor, densely solves the normal equations, and updates the values.
Values updateCholesky(const Values& values, const Ordering& ordering,
const Dampen& dampen = nullptr) const;
/// Clone() performs a deep-copy of the graph, including all of the factors
NonlinearFactorGraph clone() const;
执行所有因子的深度复制,并根据mapping更改Keys
rekey_mapping是旧键>新键的映射
/**
* Rekey() performs a deep-copy of all of the factors, and changes
* keys according to a mapping.
*
* Keys not specified in the mapping will remain unchanged.
*
* @param rekey_mapping is a map of old->new keys
* @result a cloned graph with updated keys
*/
NonlinearFactorGraph rekey(const std::map<Key,Key>& rekey_mapping) const;
∣ h ( x ) − z ∣ R 2 |h(x)-z|^2_R ∣h(x)−z∣R2
/**
* Directly add ExpressionFactor that implements |h(x)-z|^2_R
* @param h expression that implements measurement function
* @param z measurement
* @param R model
*/
template<typename T>
void addExpressionFactor(const SharedNoiseModel& R, const T& z,
const Expression<T>& h) {
push_back(boost::make_shared<ExpressionFactor<T> >(R, z, h));
}
/**
* Convenience method which adds a PriorFactor to the factor graph.
* @param key Variable key
* @param prior The variable's prior value
* @param model Noise model for prior factor
*/
template<typename T>
void addPrior(Key key, const T& prior,
const SharedNoiseModel& model = nullptr) {
emplace_shared<PriorFactor<T>>(key, prior, model);
}
/**
* Convenience method which adds a PriorFactor to the factor graph.
* @param key Variable key
* @param prior The variable's prior value
* @param covariance Covariance matrix.
*
* Note that the smart noise model associated with the prior factor
* automatically picks the right noise model (e.g. a diagonal noise model
* if the provided covariance matrix is diagonal).
*/
template<typename T>
void addPrior(Key key, const T& prior, const Matrix& covariance) {
emplace_shared<PriorFactor<T>>(key, prior, covariance);
}
从“分散”而不是“排序”进行线性化。因为不包括gttic,所以被设为私有
/**
* Linearize from Scatter rather than from Ordering. Made private because
* it doesn't include gttic.
*/
boost::shared_ptr<HessianFactor> linearizeToHessianFactor(
const Values& values, const Scatter& scatter, const Dampen& dampen = nullptr) const;
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & boost::serialization::make_nvp("NonlinearFactorGraph",
boost::serialization::base_object<Base>(*this));
}
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V41
/** \deprecated */
boost::shared_ptr<HessianFactor> GTSAM_DEPRECATED linearizeToHessianFactor(
const Values& values, boost::none_t, const Dampen& dampen = nullptr) const
{return linearizeToHessianFactor(values, dampen);}
/** \deprecated */
Values GTSAM_DEPRECATED updateCholesky(const Values& values, boost::none_t,
const Dampen& dampen = nullptr) const
{return updateCholesky(values, dampen);}
#endif