• pytorch 实现逻辑回归


    目录

    1. 导入库

    2. 定义数据集

     2.1 生成数据

     2.2 设置label

    3. 搭建网络+优化器

    4. 训练

    5. 绘制决策边界

    6. 代码


    1. 导入库

    机器学习的任务分为两大类:分类和回归

    分类是对一堆目标进行识别归类,例如猫狗分类、手写数字分类等等

    回归是对某样事物接下来行为的预测,例如预测天气等等

    这次我们要完成的任务是逻辑回归,虽然名字叫做回归,其实是个二元分类的任务

    首先看看我们需要的库文件

     torch.nn  是专门为神经网络设计的接口

    matplotlib 用来绘制图像,帮助可视化任务

    torch 定义张量,数据的传输利用张量来实现

    optim 优化器的包,例如SGD

    numpy 数据处理的包

    2. 定义数据集

    简单说明一下任务,想在一个正方形的区域内生成若干点,然后手工设计label,最后通过神经网络的训练,画出决策边界

    假设:正方形的边长是2,左下角的坐标为(0,0),右上角的坐标为(2,2)

    然后我们手工定义分界线 y = x ,在分界线的上方定义为蓝色,下方定义为红色

     2.1 生成数据

    首先生成数据的代码为

     首先通过rand(0-1的均匀分布)生成200个点,并将他们扩大2倍,x1代表横坐标,x2代表纵坐标

    然后定义一下分类,这里简单介绍一下zip函数。

    zip会将这里的a,b对应打包成一对,这样i对应的就是(1,‘a’),i[0] 对应的就是1 2 3

     

    再回到我们的代码,因为我们要实现的是二元分类,所以我们定义两个不同的类型,用pos,neg存起来。然后我们知道i[1] 代表的是 x2 ,i[0] 代表的是x1 , 所以 x2 - x1 < 0 也就是也就是在直线y=x的下面为pos类型。否则,为neg类型

     最后,我们需要将pos,neg类型的绘制出来。因为pos里面其实是类似于(1,1)这样的坐标,因为pos.append(i) 里面的 i 其实是(x1,x2) 的坐标形式, 所以我们将pos 里面的第一个元素x1定义为赋值给横坐标,第二个元素x2赋值给纵坐标

    然后通过scatter 绘制离散的点就可以,将pos 绘制成 red 颜色,neg 绘制成 blue 颜色,如图

     

     2.2 设置label

    我们进行的其实是有监督学习,所以需要label

    这里需要注意的是,不同于回归任务,x1不是输入,x2也不是输出。应该x1,x2都是输入的元素,也就是特征feature。所以我们应该将红色的点集设置一个标签,例如 1 ,蓝色的点集设置一个标签,例如 0.

    实现代码如下

     很容易理解,训练集x_data 应该是所有样本,也就是pos和neg的所以元素。而之前介绍了x1,x2都是输入的特征,那么x_data的shape 应该是 [200,2] 的。而y_data 只有1(pos 红色)类别,或者 0(neg 蓝色)类型,所以y_data 的shape 应该是 [200,1] 的。y_data view的原因是变成矩阵的形式而不是向量的形式

    这里的意思是,假如坐标是(1.5,0.5)那么应该落在红色区域,那么这个点的标签就是1

     

    3. 搭建网络+优化器

     网络的类型很简单,不再赘述。至于为什么要继承nn.Module或者super那步是干啥的不用管,基本上都是这样写的,记住就行。

    需要注意的是我们输入的特征是(n * 2) ,所以Linear 应该是(2,1)

    二元分类最后的输出一般选用sigmoid函数

    这里的损失函数我们选择BCE,二元交叉熵损失函数。

    算法为随机梯度下降

     

    4. 训练

     

    训练的过程也比较简单,就是将模型的预测输出值和真实的label作比较。然后将梯度归零,在反向传播并且更新梯度。

     

    5. 绘制决策边界

     这里模型训练完成后,将w0,w1 ,b取出来,然后绘制出直线

    这里要绘制的是w0 * x1+ w1 * x2 + b = 0 ,因为最开始介绍了x1代表横坐标x,x2代表纵坐标y。通过变形可知y = (- w0 * x1 - b ) / w1,结果如图

     程序输出的损失为

     最后,w0 = 4.1911 , w1 = -4.0290 ,b = 0.0209 ,近似等于y = x,和我们刚开始定义的分界线类似

    6. 代码

     

    1. import torch.nn as nn
    2. import matplotlib.pyplot as plt
    3. import torch
    4. from torch import optim
    5. import numpy as np
    6. torch.manual_seed(1) # 保证程序随机生成数一样
    7. x1 = torch.rand(200) * 2
    8. x2 = torch.rand(200) * 2
    9. data = zip(x1,x2)
    10. pos = [] # 定义类型 1
    11. neg = [] # 定义类型 2
    12. def classification(data):
    13. for i in data:
    14. if(i[1] - i[0] < 0):
    15. pos.append(i)
    16. else:
    17. neg.append(i)
    18. classification(data)
    19. pos_x = [i[0] for i in pos]
    20. pos_y = [i[1] for i in pos]
    21. neg_x = [i[0] for i in neg]
    22. neg_y = [i[1] for i in neg]
    23. plt.scatter(pos_x,pos_y,c='r')
    24. plt.scatter(neg_x,neg_y,c='b')
    25. plt.show()
    26. x_data = [[i[0],i[1]] for i in pos]
    27. x_data.extend([[i[0],i[1]] for i in neg])
    28. x_data = torch.Tensor(x_data) # 输入数据 feature
    29. y_data = [1 for i in range(len(pos))]
    30. y_data.extend([0 for i in range(len(neg))])
    31. y_data = torch.Tensor(y_data).view(-1,1) # 对应的标签
    32. class LogisticRegressionModel(nn.Module): # 定义网络
    33. def __init__(self):
    34. super(LogisticRegressionModel,self).__init__()
    35. self.linear = nn.Linear(2,1)
    36. self.sigmoid = nn.Sigmoid()
    37. def forward(self,x):
    38. x = self.linear(x)
    39. x = self.sigmoid(x)
    40. return x
    41. model = LogisticRegressionModel()
    42. criterion = nn.BCELoss()
    43. optimizer = optim.SGD(model.parameters(),lr =0.01)
    44. for epoch in range(10000):
    45. y_pred = model(x_data)
    46. loss = criterion(y_pred,y_data) # 计算损失值
    47. if epoch % 1000 == 0:
    48. print(epoch,loss.item()) # 打印损失值
    49. optimizer.zero_grad() # 梯度清零
    50. loss.backward() # 反向传播
    51. optimizer.step() # 梯度更新
    52. w = model.linear.weight[0] # 取出训练完成的结果
    53. w0 = w[0]
    54. w1 = w[1]
    55. b = model.linear.bias.item()
    56. with torch.no_grad(): # 绘制决策边界,这里不需要计算梯度
    57. x= torch.arange(0,3).view(-1,1)
    58. y = (- w0 * x - b) / w1
    59. plt.plot(x.numpy(),y.numpy())
    60. plt.scatter(pos_x,pos_y,c='r')
    61. plt.scatter(neg_x,neg_y,c='b')
    62. plt.xlim(0,2)
    63. plt.ylim(0,2)
    64. plt.show()

    程序结果

     

  • 相关阅读:
    【手撕数据结构】(三)顺序表和链表
    基于 FFMPEG 的跨平台视频播放器简明教程(三):视频解码
    mySQL创建表的基础命令
    【WPF应用31】WPF基本控件-ListView的详解与示例
    【多线程与高并发原理篇:3_java内存模型】
    Spark 内核 (二) --------- Spark 部署模式
    leetcode - 1658. Minimum Operations to Reduce X to Zero
    操作系统导论--受限制的直接执行
    编写一款2D CAD/CAM软件(十六)交互绘制图形
    QT之QLineEdit简介
  • 原文地址:https://blog.csdn.net/qq_44886601/article/details/127284028