every blog every motto: There’s only one corner of the universe you can be sure of improving, and that’s your own self.
https://blog.csdn.net/weixin_39190382?spm=1010.2135.3001.5343
相比之前的SPADE又进了一步,还是很不错的一篇文章
论文: https://arxiv.org/abs/2011.08785
时间: 2020
作者: Thomas Defard, Aleksandr Setkov, Angelique Loesch, Romaric Audigier
单位: Universite Paris-Saclay
结果:
使用resnet作为特征提取网络,从网络中提取特定的三层(和SPADE一样用到了钩子函数),训练集提取到的三个特征图shape为(B,C,H,W):
如下图所示,颜色相同表示数据相同(因为三个特征图的大小不同,所以会出现这个情况)。
三个通特征图合并以后的shape为:(209,1792,56,56)
在随机选择500个通道(论文实验表明,随机选取比PCA效果好),其shape:(209,550,56,56)
图像的像素假设是多维高斯分布,所以会求出均值和协方差。因为是像素级处理,会将上面提取的embedding vetor进行处理,shape变换:
(209,550,56,56) -> (209,550,56*56),
可以理解拉成一条直线(209,550,3136)。
求batch中所有图片(对应像素的均值):(550,3136),
协方差:(550,550,3136)
一个像素,含有若干通道,上面的通道数为550,可以理解为一个长度为550向量
至此,我们将训练集(全为正常图片)的正常图片每个像素,都用多维高斯分布进行了表示,即均值和协方差表示
在上一步中,我们得到了正常图像的表示,在推理过程中,我们需要计算测试图片和训练图片之间的“距离”。距离计算使用的马氏距离,具体可参考马氏距离,点到一个分布的计算
距离越远(数值越大)表示异常概率越大。
def extract_train_feature(train_dataloader, args, class_name, model, idx, outputs):
"""提取是训练集特征,保存的是处理后的均值和协方差"""
train_outputs = OrderedDict([('layer1', []), ('layer2', []), ('layer3', [])])
# extract train set features
train_feature_filepath = os.path.join(args.save_path, 'temp_%s' % args.arch, 'train_%s.pkl' % class_name)
if not os.path.exists(train_feature_filepath):
for (x, _, _) in tqdm(train_dataloader, '| feature extraction | train | %s |' % class_name):
# model prediction
with torch.no_grad():
p = model(x.to(device))
# get intermediate layer outputs
for k, v in zip(train_outputs.keys(), outputs):
train_outputs[k].append(v.cpu().detach())
# initialize hook outputs
outputs.clear()
for k, v in train_outputs.items():
train_outputs[k] = torch.cat(v, 0)
# Embedding concat
embedding_vectors = train_outputs['layer1'] # (209,256,56,56)
for layer_name in ['layer2', 'layer3']:
embedding_vectors = embedding_concat(embedding_vectors, train_outputs[layer_name])
# randomly select d dimension (209,1792,56,56) -> (209,550,56,56)
embedding_vectors = torch.index_select(embedding_vectors, 1, idx)
# calculate multivariate Gaussian distribution
B, C, H, W = embedding_vectors.size()
# (209,550,56,56) -> (209,550,3136)
embedding_vectors = embedding_vectors.view(B, C, H * W)
# (550,3136)
mean = torch.mean(embedding_vectors, dim=0).numpy()
cov = torch.zeros(C, C, H * W).numpy() # (550,550,3136)
I = np.identity(C)
for i in range(H * W): # 对角线上加一个值,使其满秩可逆
# cov[:, :, i] = LedoitWolf().fit(embedding_vectors[:, :, i].numpy()).covariance_
cov[:, :, i] = np.cov(embedding_vectors[:, :, i].numpy(), rowvar=False) + 0.01 * I
# save learned distribution
train_outputs = [mean, cov]
with open(train_feature_filepath, 'wb') as f:
pickle.dump(train_outputs, f)
else:
print('load train set feature from: %s' % train_feature_filepath)
with open(train_feature_filepath, 'rb') as f:
train_outputs = pickle.load(f)
return train_outputs
def extract_test_features(test_dataloader, model, class_name, outputs):
test_outputs = OrderedDict([('layer1', []), ('layer2', []), ('layer3', [])])
gt_list = []
gt_mask_list = []
test_imgs = []
temp_x = None
# extract test set features
for (x, y, mask) in tqdm(test_dataloader, '| feature extraction | test | %s |' % class_name):
if temp_x == None:
temp_x = x
test_imgs.extend(x.cpu().detach().numpy())
gt_list.extend(y.cpu().detach().numpy())
gt_mask_list.extend(mask.cpu().detach().numpy())
# model prediction
with torch.no_grad():
_ = model(x.to(device))
# get intermediate layer outputs
for k, v in zip(test_outputs.keys(), outputs):
test_outputs[k].append(v.cpu().detach())
# initialize hook outputs
outputs.clear()
for k, v in test_outputs.items():
test_outputs[k] = torch.cat(v, 0)
# Embedding concat,通道方向上拼接
embedding_vectors = test_outputs['layer1'] # (83,256,56,56)
for layer_name in ['layer2', 'layer3']:
embedding_vectors = embedding_concat(embedding_vectors, test_outputs[layer_name])
return embedding_vectors, gt_list, gt_mask_list, test_imgs, temp_x
for i in range(H * W):
# train_outputs:[mean,con] mean:[550,3316],cov:[550,550,3136]
mean = train_outputs[0][:, i] # [550,]
conv_inv = np.linalg.inv(train_outputs[1][:, :, i]) # 协方差逆阵 (550,550)
# 3136 * [(550,)*(550,550)*(550,)] -> (550,3136)
dist = [mahalanobis(sample[:, i], mean, conv_inv) for sample in embedding_vectors]
dist_list.append(dist)
# 3136*(83,) -> (83,56,56)
dist_list = np.array(dist_list).transpose(1, 0).reshape(B, H, W) # (83,56,56)
通俗理解:
将训练集中每一个像素用一个分布表示(多维高斯分布),然后计算,测试集中每个像素到训练集中对应像素的距离。因为训练集是正常图片,所以测试图片离训练集(正常图片)越远,表示异常的概率越大。所以用距离表示异常的得分。
感觉还是挺有意思的,
之前SPADE用KNN找到最近的几张图片,相同点都是用到了距离的计算,但是对“距离”的看法有所不同
完整代码:PaDiM,欢迎star
[1] https://blog.csdn.net/weixin_39190382/article/details/127656042?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22127656042%22%2C%22source%22%3A%22weixin_39190382%22%7D
[2] https://blog.csdn.net/qq_41804812/article/details/125193330
[3] https://blog.csdn.net/sinat_24899403/article/details/111032279