数据库是学习JavaWeb的一个前置,只有了解了数据库的操作和使用,我们才能更好地组织和管理网站应用产生的数据。
本质上是一个程序,默认运行在3306端口。里面可能封装了IO流将我们要保存的数据保存在磁盘上。
数据库是数据管理的有效技术,是由一批数据构成的有序集合,这些数据被存放在结构化的数据表里。数据表之间相互关联,反映客观事物间的本质联系。数据库能有效地帮助一个组织或企业科学地管理各类信息资源。简而言之,我们的数据可以交给数据库来帮助我们进行管理,同时数据库能够为我们提供高效的访问性能。
在JavaSE学习阶段中,我们学习了如何使用文件I/O来将数据保存到本地,这样就可以将一个数据持久地存储在本地,即使程序重新打开,我们也能加载回上一次的数据,但是当我们的数据变得非常多的时候,这样的方式就显得不太方便了(因为IO操作是很消耗资源的,数据库软件可能有更好的替代方案)。同时我们如果需要查找众多数据的中的某一个,就只能加载到内存再进行查找,这样显然是很难受的!
而数据库就是专门做这事的,我们可以快速查找想要的数据,便捷地插入、修改和删除数据,并且数据库不仅能做这些事,还能提供更多便于管理数据和操作数据的功能!
常见的数据库有很多种,包括但不限于:
而我们要学习的是MySQL数据,其实无论学习哪种数据库,SQL语句大部分都是通用的,只有少许语法是不通用的,因此我们只需要学习一种数据库其他的也就差不多都会了。
数据模型与现实世界中的模型一样,是对现实世界数据特征的一种抽象。实际上,我们之前学习的类就是对现实世界数据的一种抽象,比如一个学生的特征包括姓名,年龄,年级,学号,专业等,这些特征也称为实体的一种属性,属性具有以下特点:
实体与属性之间可以具有一定的联系,比如一个老师可以教很多个学生,而学生相对于老师就是被教授的关系;又比如每个同学都有一个学号与其唯一对应,因此学号和学生之间也有一种联系。
像一个老师教多个学生的联系就是一种一对多的联系(1:n),
学号唯一对应,就是一种一对一的联系(1:1);
每一个老师不仅可以教多个学生,每一个学生也可以有多个教师,这就是一种多对多的联系(n:m)。
MySQL就是一种关系型数据库,通过使用关系型数据库,我们就可以很好地存储这样带有一定联系的数据。
通过构建一个ER图,我们就能很好地理清不同数据模型之间的关系和特点。比如这张图:教练与球队是一对一,球队与队员是多对多(一个球队有很多球员,一个球员也可以属于不同的球队)。
既然了解了属性和联系,那么我们就来尝试创建一个数据库,并在数据库中添加用于存放数据的表,每一张表都代表一种实体的数据。首先我们要明确,我们需要创建什么样子的表:
其中加粗的属性,作为Key,用于区别于其他实体数据的唯一标记。
为了理解起来更加轻松,我们从图形界面操作再讲到SQL语句,请不要着急。我们现在通过Navicat或idea自带的数据库客户端来创建一个数据库和上述三个表。
要去设计存放一个实体的表,我们就需要了解数据库的关系规范化,尽可能减少“不好”的关系存在,如何设计一个优良的关系模型是最关键的内容!简而言之,我们要学习一下每一个表该如何去设计。
第一范式是指数据库的每一列都是不可分割的基本数据项,而下面这样的就存在可分割的情况:
电话号码实际上包括了家用座机电话
和移动电话
,因此它可以被拆分为:
满足第一范式是关系型数据库最基本的要求!
第二范式要求表中必须存在主键,且其他的属性必须完全依赖于主键,比如:
学号是每个学生的唯一标识,每个学生都有着不同的学号,因此此表中存在一个主键,并且每个学生的所有属性都依赖于学号,学号发生改变就代表学生发生改变,姓名和性别都会因此发生改变,所有此表满足第二范式。
在满足第二范式的情况下,所有的属性都不传递依赖于主键,满足第三范式。
实际上书籍编号依赖于借阅编号,而书籍名称和书籍作者依赖于书籍编号,因此存在传递依赖的情况,我们可以将书籍信息进行单独拆分为另一张表:
这样就消除了传递依赖,从而满足第三范式。
BCNF作为第三范式的补充,假设仓库管理关系表为StorehouseManage(仓库ID, 存储物品ID, 管理员ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。这个数据库表中存在如下决定关系:
(仓库ID, 存储物品ID) →(管理员ID, 数量)
(管理员ID, 存储物品ID) → (仓库ID, 数量)
所以,(仓库ID, 存储物品ID)和(管理员ID, 存储物品ID)都是StorehouseManage的候选关键字,表中的唯一非关键字段为数量,它是符合第三范式的。但是,由于存在如下决定关系:
(仓库ID) → (管理员ID)
(管理员ID) → (仓库ID)
即存在关键字段决定关键字段的情况,如果修改管理员ID,那么就必须逐一进行修改,所以其不符合BCNF范式。
结构化查询语言(Structured Query Language)简称SQL,这是一种特殊的语言,它专门用于数据库的操作。每一种数据库都支持SQL,但是他们之间会存在一些细微的差异,因此不同的数据库都存在自己的“方言”。
SQL语句不区分大小写(关键字推荐使用大写),它支持多行,并且需要使用;
进行结尾!
SQL也支持注释,通过使用--
或是#
来编写注释内容,也可以使用/*
来进行多行注释。(针对SQL文件)
我们要学习的就是以下四种类型的SQL语言:
我们平时所说的CRUD其实就是增删改查(Create/Retrieve/Update/Delete)
我们可以通过create database
来创建一个数据库:
create database 数据库名
为了能够支持中文,我们在创建时可以设定编码格式:(使用UTF-8)
CREATE DATABASE IF NOT EXISTS 数据库名 DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
如果我们创建错误了,我们可以将此数据库删除,通过使用drop database
来删除一个数据库:
drop database 数据库名
数据库创建完成后,我们一般通过create table
语句来创建一张表:
create table 表名(列名 数据类型[列级约束条件],
列名 数据类型[列级约束条件],
...
[,表级约束条件])
以下的数据类型用于字符串存储:
以下数据类型用于存储数字:
以下数据类型用于存储时间:
表级约束有四种:主键、外键、唯一、检查。默认值和非空/空值 必须写在列级约束条件里。
其实没有必要记这些约束用SQL语句怎么写,实际开发中一定是用图形化界面进行库表设计的。所以这一块的SQL编写不是重点,学习navicat才是重点。SQL编写的重点是CRUD。
如果我们想修改表结构,我们可以通过alter table
来进行修改:
ALTER TABLE 表名[ADD 新列名 数据类型[列级约束条件]]
[DROP COLUMN 列名[restrict|cascade]]
[ALTER COLUMN 列名 新数据类型]
我们可以通过ADD来添加一个新的列,通过DROP来删除一个列,不过我们可以添加restrict或cascade,默认是restrict,表示如果此列作为其他表的约束或视图引用到此列时(比如说外键),将无法删除,而cascade会强制连带引用此列的约束、视图一起删除。还可以通过ALTER来修改此列的属性。
我们可以通过drop table
来删除一个表:
DROP TABLE 表名[restrict|cascade]
其中restrict和cascade上面的效果一致。
前面我们已经学习了如何使用SQL语句来创建、修改、删除数据库以及表,而如何向数据库中插入、删除、更新数据,将是本版块讨论的重点。
通过使用insert into
语句来向数据库中插入一条数据(一条记录):
INSERT INTO 表名 VALUES(值1, 值2, 值3);
如果插入的数据与列一一对应,那么可以省略列名,但是如果希望向指定列上插入数据,就需要给出列名:
INSERT INTO 表名(列名1, 列名2) VALUES(值1, 值2);
我们也可以一次性向数据库中插入多条数据:
INSERT INTO 表名(列名1, 列名2) VALUES(值1, 值2), (值1, 值2), (值1, 值2)
我们可以通过update
语句来更新表中的数据:
UPDATE 表名 SET 列名=值,... WHERE 条件
注意:SQL语句中的等于判断是=
**警告:**如果忘记添加WHERE
字句来限定条件,将使得整个表中此列的所有数据都被修改!
我们可以通过使用delete
来删除表中的数据:
DELETE FROM 表名
通过这种方式,将删除表中全部数据,我们也可以使用where
来添加条件,只删除指定的数据:
DELETE FROM 表名 WHERE 条件
数据库的查询是我们整个数据库学习中的重点内容,面对数据库中庞大的数据,该如何去寻找我们想要的数据,就是我们主要讨论的问题。
单表查询是最简单的一种查询,我们只需要在一张表中去查找数据即可,通过使用select
语句来进行单表查询:
-- 指定查询某一列数据
SELECT 列名[,列名] FROM 表名
-- 会以别名显示此列
SELECT 列名 别名 FROM 表名
-- 查询所有的列数据
SELECT * FROM 表名
-- 只查询不重复的值 (去重)
SELECT DISTINCT 列名 FROM 表名
我们也可以添加where
字句来限定查询目标:
SELECT * FROM 表名 WHERE 条件
我们来尝试使用一下上面这几种条件(面试前去牛客网刷sql题)。
我们可以通过order by
来将查询结果进行排序:
SELECT * FROM 表名 WHERE 条件 ORDER BY 列名 ASC|DESC
使用ASC表示升序排序,使用DESC表示降序排序,默认为升序。
我们也可同时添加多个排序:
SELECT * FROM 表名 WHERE 条件 ORDER BY 列名1 ASC|DESC, 列名2 ASC|DESC
这样会先按照列名1进行排序,每组列名1相同的数据再按照列名2排序。
聚集函数一般用作统计,包括:
count([distinct]*)
统计所有的行数(distinct表示去重再统计,下同)count([distinct]列名)
先按照列名去重,然后返回去重后有多少行sum([distinct]列名)
求一列的和(注意必须是数字类型的)avg([distinct]列名)
求一列的平均值(注意必须是数字类型)max([distinct]列名)
求一列的最大值min([distinct]列名)
求一列的最小值一般聚集函数是这样使用的:
SELECT count(distinct 列名) FROM 表名 WHERE 条件
通过使用group by
来对查询结果进行分组,它需要结合聚合函数一起使用:
SELECT sum(*) FROM 表名 WHERE 条件 GROUP BY 列名//应用场景:统计一个班男女分别多少人。
我们还可以添加having
来限制分组条件:
SELECT sum(*) FROM 表名 WHERE 条件 GROUP BY 列名 HAVING 约束条件//以后多练习
我们可以通过limit
来限制查询的数量,只取前n个结果:
SELECT * FROM 表名 LIMIT 数量
我们也可以进行分页:
SELECT * FROM 表名 LIMIT **起始位置,数量**
多表查询是同时查询的两个或两个以上的表,多表查询会通过连接转换为单表查询。
SELECT * FROM 表1, 表2
直接这样查询会得到两张表的笛卡尔积,也就是每一项数据和另一张表的每一项数据都结合一次,会产生庞大的数据(m*n)。
SELECT * FROM 表1, 表2 WHERE 条件
这样,只会从笛卡尔积的结果中得到满足条件的数据。
注意: 如果两个表中都带有某个属性,需要添加表名前缀来指明是哪一个表的数据。(以后多练就知道了)
自身连接,就是将表本身和表进行笛卡尔积计算,得到结果,但是由于表名相同,因此要先起一个别名:
SELECT * FROM 表名 别名1, 表名 别名2
其实自身连接查询和前面的是一样的,只是连接对象变成自己和自己了。
外连接就是专门用于联合查询情景的,比如现在有一个存储所有用户的表,还有一张用户详细信息的表,我希望将这两张表结合到一起来查看完整的数据,我们就可以通过使用外连接来进行查询,外连接有三种方式:
inner join
进行内连接,只会返回两个表满足条件的交集部分:left join
进行左连接,不仅会返回两个表满足条件的交集部分,也会返回左边表中的全部数据,而在右表中缺失的数据会使用null
来代替(右连接right join
同理,只是反过来而已,这里就不再介绍了):我们可以将查询的结果作为另一个查询的条件。比如:
SELECT * FROM 表名 WHERE 列名 = (SELECT 列名 FROM 表名 WHERE 条件)
庞大的数据库不可能由一个人来管理,我们需要更多的用户来一起管理整个数据库。
我们可以通过create user
来创建用户:
CREATE USER 用户名 identified by 密码;
也可以不带密码:
CREATE USER 用户名;
我们可以通过@来限制用户登录的登录IP地址,%
表示匹配所有的IP地址,默认使用的就是任意IP地址。
首先需要添加一个环境变量,然后我们通过cmd去登陆mysql:
login -u 用户名 -p
输入密码后即可登陆此用户,我们输入以下命令来看看能否访问所有数据库:
show databases;
我们发现,虽然此用户能够成功登录,但是并不能查看完整的数据库列表,这是因为此用户还没有权限!
我们可以通过使用grant
来为一个数据库用户进行授权:
grant all|权限1,权限2...(列1,...) on 数据库.表 to 用户 [with grant option]
其中all代表授予所有权限,当数据库和表为*
,代表为所有的数据库和表都授权。如果在最后添加了with grant option
,那么被授权的用户还能将已获得的授权继续授权给其他用户。
我们可以使用revoke
来收回一个权限:
revoke all|权限1,权限2...(列1,...) on 数据库.表 from 用户
视图本质就是一个查询的结果,不过我们每次都可以通过打开视图来按照我们想要的样子查看数据。既然视图本质就是一个查询的结果,那么它本身就是一个虚表,并不是真实存在的,数据实际上还是存放在原来的表中。
我们可以通过create view
来创建视图;
CREATE VIEW 视图名称(列名) as 子查询语句 [WITH CHECK OPTION];
WITH CHECK OPTION是指当创建后,如果更新视图中的数据,是否要满足子查询中的条件表达式,不满足将无法插入,创建后,我们就可以使用select
语句来直接查询视图上的数据了,因此,还能在视图的基础上,导出其他的视图。
通过drop
来删除一个视图:
drop view apptest
在数据量变得非常庞大时,通过创建索引,能够大大提高我们的查询效率,就像Hash表一样,它能够快速地定位元素存放的位置,我们可以通过下面的命令创建索引:
-- 创建索引
CREATE INDEX 索引名称 ON 表名 (列名)
-- 查看表中的索引
show INDEX FROM student
我们也可以通过下面的命令删除一个索引:
drop index 索引名称 on 表名
虽然添加索引后会使得查询效率更高,但是我们不能过度使用索引,索引为我们带来高速查询效率的同时,也会在数据更新时产生额外建立索引的开销,同时也会占用磁盘资源。
触发器就像其名字一样,在某种条件下会自动触发,在select
/update
/delete
时,会自动执行我们预先设定的内容,触发器通常用于检查内容的安全性,相比直接添加约束,触发器显得更加灵活。
触发器所依附的表称为基本表,当触发器表上发生select
/update
/delete
等操作时,会自动生成两个临时的表(new表和old表,只能由触发器使用)
比如在insert
操作时,新的内容会被插入到new表中;在delete
操作时,旧的内容会被移到old表中,我们仍可在old表中拿到被删除的数据;在update
操作时,旧的内容会被移到old表中,新的内容会出现在new表中。
CREATE TRIGGER 触发器名称 [BEFORE|AFTER] [INSERT|UPDATE|DELETE] ON 表名/视图名 FOR EACH ROW DELETE FROM student WHERE student.sno = new.sno
FOR EACH ROW表示针对每一行都会生效,无论哪行进行指定操作都会执行触发器!
通过下面的命令来查看触发器:
SHOW TRIGGERS
如果不需要,我们就可以删除此触发器:
DROP TRIGGER 触发器名称
当我们要进行的操作非常多时,比如要依次删除很多个表的数据,我们就需要执行大量的SQL语句来完成,这些数据库操作语句就可以构成一个事务!只有Innodb引擎支持事务,我们可以这样来查看支持的引擎:
SHOW ENGINES;
MySQL默认采用的是Innodb引擎,我们也可以去修改为其他的引擎。
事务具有以下特性:
我们通过以下例子来探究一下事务:
begin; #开始事务
...
rollback; #回滚事务
savepoint 回滚点; #添加回滚点
rollback to 回滚点; #回滚到指定回滚点
...
commit; #提交事务
-- 一旦提交,就无法再进行回滚了!因为持久性。
结束!