知识点:图的遍历,回溯
这个题其实就是图的遍历然后加上回溯,但是有点坑的是,我们在找路径之前,要先判断1是不是能到k点,否则会超时,这个要不是看提示,还真想不到,因为如果不用别的函数来判断是不是连通的话,用求解的dfs函数,是自带回溯的,如果找不到,那么会比较费时间,会把所有的路径都走一遍,总之做这种图论的题总是会有很多这种考虑不周到,最后导致错误的地方,
这里存图没用邻接矩阵,用的是董晓讲的链式邻接表,因为我们每个节点要从小到大遍历它连着的节点,所有搜索之前对每个点连着的点排序,如果是采用链式前向星的话,我想不到该怎么写程序,就没有使用那种存图方式,
还有一点需要注意的是,题目输出,一个空格就够了,不需要样例里面长度为3的空格
- #include
-
- using namespace std;
-
- const int N = 25;
-
- int n, k, vis[N], cnt;
- vector<int> h[N], chosen;
- vector
int, int>> e; -
- void add(int a, int b) {
- e.push_back(make_pair(a, b));
- h[a].push_back((int) e.size() - 1);
- }
-
- bool cmp(int a, int b) {
- return e[a].second < e[b].second;
- }
-
- bool bfs() {
- queue<int> q;
- q.push(1);
- int dist[N] = {};
- dist[1] = 1;
- while (!q.empty()) {
- int now = q.front(); q.pop();
- if (now == k) return true;
- for (int i = 0; i < (int) h[now].size(); i++) {
- int ind = h[now][i];
- int y = e[ind].second;
- if (dist[y]) continue;
- q.push(y);
- dist[y] = 1;
- }
- }
- return false;
- }
-
- void dfs(int x) {
- if (x == k) {
- for (int i = 0; i < (int) chosen.size(); i++) {
- cout << chosen[i] << (i < (int) chosen.size() - 1 ? " " : "\n");
- }
- cnt++;
- return;
- }
- for (int i = 0; i < (int) h[x].size(); i++) {
- int ind = h[x][i];
- int y = e[ind].second;
- if (vis[y]) continue;
- vis[y] = 1;
- chosen.push_back(y);
- dfs(y);
- chosen.pop_back();
- vis[y] = 0;
- }
- }
-
- int main() {
- int tt = 1;
- while (cin >> k) {
- n = 0; cnt = 0;
- e.clear();
- for (int i = 0; i < N; i++) h[i].clear();
- cout << "CASE " << tt++ << ":\n";
- int a, b;
- while (cin >> a >> b && a) {
- add(a, b);
- add(b, a);
- n = max(n, max(a, b));
- }
- for (int i = 1; i <= n; i++) {
- sort(h[i].begin(), h[i].end(), cmp);
- }
- if (bfs()) {
- vis[1] = 1;
- chosen.push_back(1);
- dfs(1);
- vis[1] = 0;
- chosen.pop_back();
- }
- printf("There are %d routes from the firestation to streetcorner %d.\n", cnt, k);
- }
- return 0;
- }