hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
Hbase与Hive都是架构在hadoop之上的。都是用HDFS作为底层存储。
在大数据架构中,Hive和HBase是协作关系,Hive方便地提供了Hive QL的接口来简化MapReduce的使用, 而HBase提供了低延迟的数据库访问。如果两者结合,可以利用MapReduce的优势针对HBase存储的大量内容进行离线的计算和分析。
Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,这种相互通信是通过$HIVE_HOME/lib/hive-hbase-handler-*.jar工具类实现的。通过HBaseStorageHandler,Hive可以获取到Hive表所对应的HBase表名,列簇和列,InputFormat、OutputFormat类,创建和删除HBase表等。
Hive访问HBase中HTable的数据,实质上是通过MR读取HBase的数据,而MR是使用HiveHBaseTableInputFormat完成对表的切分,获取RecordReader对象来读取数据的。
对HBase表的切分原则是一个Region切分成一个Split,即表中有多少个Regions,MR中就有多少个Map;
读取HBase表数据都是通过构建Scanner,对表进行全表扫描,如果有过滤条件,则转化为Filter。当过滤条件为rowkey时,则转化为对rowkey的过滤;Scanner通过RPC调用RegionServer的next()来获取数据。
简单来说,Hive和Hbase的集成就是,打通了Hive和Hbase,使得Hive中的表创建之后,可以同时是一个Hbase的表,并且在Hive端和Hbase端都可以做任何的操作。
(1)将ETL操作的数据通过Hive加载到HBase中,数据源可以是文件也可以是Hive中的表。
(2)Hbae作为Hive的数据源,通过整合,让HBase支持JOIN、GROUP等SQL查询语法。
(3)构建低延时的数据仓库
文章参考链接:https://zhuanlan.zhihu.com/p/74041611