| p / % p/\% p/% | 36.9 36.9 36.9 | 46.7 46.7 46.7 | 63.7 63.7 63.7 | 77.8 77.8 77.8 | 84.0 84.0 84.0 | 87.5 87.5 87.5 |
|---|---|---|---|---|---|---|
| θ / ∘ C \theta / ^\circ C θ/∘C | 181 181 181 | 197 197 197 | 235 235 235 | 270 270 270 | 283 283 283 | 292 292 292 |
设
M
为偏差平方和,即
M
=
∑
i
=
1
6
[
θ
i
−
(
a
p
i
+
b
)
]
2
,令
{
∂
M
∂
a
=
−
∑
i
=
1
6
2
p
i
[
θ
i
−
(
a
p
i
+
b
)
]
=
0
,
∂
M
∂
b
=
−
∑
i
=
1
6
2
[
θ
i
−
(
a
p
i
+
b
)
]
=
0.
整理,得
{
a
∑
i
=
1
6
p
i
2
+
b
∑
i
=
1
6
p
i
=
∑
i
=
1
6
θ
i
p
i
,
a
∑
i
=
1
6
p
i
+
6
b
=
∑
i
=
1
6
θ
i
.
,
计算,得
∑
i
=
1
6
p
i
2
=
28365.28
,
∑
i
=
1
6
p
i
=
396.6
,
∑
i
=
1
6
θ
i
p
i
=
101176.3
,
∑
i
=
1
6
θ
i
=
1458
,
代入方程组,得
{
28365.28
a
+
396.6
b
=
101176.3
,
396.6
a
+
6
b
=
1458.
,解得
a
=
2.234
,
b
=
95.33
,经验公式为
θ
=
2.234
p
+
95.33.
设M为偏差平方和,即M=6∑i=1[θi−(api+b)]2,令{∂M∂a=−6∑i=12pi[θi−(api+b)]=0,∂M∂b=−6∑i=12[θi−(api+b)]=0. 整理,得{a6∑i=1p2i+b6∑i=1pi=6∑i=1θipi,a6∑i=1pi+6b=6∑i=1θi., 计算,得6∑i=1p2i=28365.28,6∑i=1pi=396.6,6∑i=1θipi=101176.3,6∑i=1θi=1458, 代入方程组,得{28365.28a+396.6b=101176.3,396.6a+6b=1458.,解得a=2.234,b=95.33,经验公式为θ=2.234p+95.33.
设
M
为偏差平方和,即
M
=
∑
i
=
1
n
[
y
i
−
(
a
x
i
2
+
b
x
i
+
c
)
]
2
,令
{
∂
M
∂
a
=
−
2
∑
i
=
1
n
[
y
i
−
(
a
x
i
2
+
b
x
i
+
c
)
]
⋅
x
i
2
=
0
,
∂
M
∂
b
=
−
2
∑
i
=
1
n
[
y
i
−
(
a
x
i
2
+
b
x
i
+
c
)
]
⋅
x
i
=
0
,
∂
M
∂
c
=
−
2
∑
i
=
1
n
[
y
i
−
(
a
x
i
2
+
b
x
i
+
c
)
]
=
0.
整理,得
{
a
∑
i
=
1
n
x
i
4
+
b
∑
i
=
1
n
x
i
3
+
c
∑
i
=
1
n
x
i
2
=
∑
i
=
1
n
x
i
2
y
i
,
a
∑
i
=
1
n
x
i
3
+
b
∑
i
=
1
n
x
i
2
+
c
∑
i
=
1
n
x
i
=
∑
i
=
1
n
x
i
y
i
,
a
∑
i
=
1
n
x
i
2
+
b
∑
i
=
1
n
x
i
+
n
c
=
∑
i
=
1
n
y
i
.
设M为偏差平方和,即M=n∑i=1[yi−(ax2i+bxi+c)]2,令{∂M∂a=−2n∑i=1[yi−(ax2i+bxi+c)]⋅x2i=0,∂M∂b=−2n∑i=1[yi−(ax2i+bxi+c)]⋅xi=0,∂M∂c=−2n∑i=1[yi−(ax2i+bxi+c)]=0. 整理,得{an∑i=1x4i+bn∑i=1x3i+cn∑i=1x2i=n∑i=1x2iyi,an∑i=1x3i+bn∑i=1x2i+cn∑i=1xi=n∑i=1xiyi,an∑i=1x2i+bn∑i=1xi+nc=n∑i=1yi.