Let X X X be a topological vector space. If A ⊂ X A\subset X A⊂X and B ⊂ X B\subset X B⊂X, then A ‾ + B ‾ ⊂ A + B ‾ \overline{A}+\overline{B}\subset \overline{A+B} A+B⊂A+B.
Take a ∈ A ‾ a\in \overline{A} a∈A, b ∈ B ‾ b\in \overline{B} b∈B; Let W W W be a neighborhood of a + b a+b a+b.
There are neighborhoods W 1 W_1 W1 and W 2 W_2 W2 of a a a and b b b s.t. W 1 + W 2 ⊂ W W_1+W_2\subset W W1+W2⊂W.
There exists x ∈ A ∩ W 1 x\in A\cap W_1 x∈A∩W1 and y ∈ B ∩ W 2 y\in B\cap W_2 y∈B∩W2, since a ∈ A ‾ a\in \overline{A} a∈A and b ∈ B ‾ b\in \overline{B} b∈B.
Then x + y ∈ A + B x+y\in A+B x+y∈A+B and x + y ∈ W x+y\in W x+y∈W.
Hence ( A + B ) ∩ W ≠ ∅ (A+B)\cap W\ne \varnothing (A+B)∩W=∅.
Consequently, a + b ∈ A + B ‾ a+b\in \overline{A+B} a+b∈A+B
::END::