参考李沐老师的《动手学深度学习》第4节:多层感知机
batch_size = 256
train_iter,test_iter = d2ltorch.load_data_fashion_mnist(batch_size)
next(iter(train_iter))[0].shape # torch.Size([256, 1, 28, 28])
next(iter(train_iter))[1].shape # torch.Size([256])
# 2个Type都是tensor
next(iter(train_iter))[1][0] # tensor(3) 图片种类,有256张图片,就有256个结果

是我们每次抽取的数据样本的大小,通过指定batch_size大小指定data_iter这个iterator每次iter多少。