• 005 gtsam/examples/easyPoint2KalmanFilter.cpp


    一个简单的2D point的卡尔曼滤波

    一、数据类型

    // Define Types for Linear System Test
    typedef Point2 LinearMeasurement;
    
    • 1
    • 2

    二、主函数

    int main() {
    
      // Create the Kalman Filter initialization point
      Point2 x_initial(0.0, 0.0);
      SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
    
      // Create Key for initial pose
      Symbol x0('x',0);
    
      // Create an ExtendedKalmanFilter object
      ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);
    
      // Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
      // In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
      // For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
      // Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
      // where F is the state transition model/matrix, B is the control input model,
      // and w is zero-mean, Gaussian white noise with covariance Q
      // Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
      // physical property, such as velocity or acceleration, and G is derived from physics
      //
      // For the purposes of this example, let us assume we are using a constant-position model and
      // the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
      // and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1].
      Vector u = Vector2(1.0, 0.0);
      SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1), true);
    
      // This simple motion can be modeled with a BetweenFactor
      // Create Key for next pose
      Symbol x1('x',1);
      // Predict delta based on controls
      Point2 difference(1,0);
      // Create Factor
      BetweenFactor<Point2> factor1(x0, x1, difference, Q);
    
      // Predict the new value with the EKF class
      Point2 x1_predict = ekf.predict(factor1);
      traits<Point2>::Print(x1_predict, "X1 Predict");
    
    
    
      // Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
      // This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1)
      // For the Kalman Filter, this requires a measurement model h(x_{t}) = \hat{z}_{t}
      // Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
      // where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
      //
      // For the purposes of this example, let us assume we have something like a GPS that returns
      // the current position of the robot. Then H = [1 0 ; 0 1]. Let us also assume that the measurement noise
      // R = [0.25 0 ; 0 0.25].
      SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector2(0.25, 0.25), true);
    
      // This simple measurement can be modeled with a PriorFactor
      Point2 z1(1.0, 0.0);
      PriorFactor<Point2> factor2(x1, z1, R);
    
      // Update the Kalman Filter with the measurement
      Point2 x1_update = ekf.update(factor2);
      traits<Point2>::Print(x1_update, "X1 Update");
    
    
    
      // Do the same thing two more times...
      // Predict
      Symbol x2('x',2);
      difference = Point2(1,0);
      BetweenFactor<Point2> factor3(x1, x2, difference, Q);
      Point2 x2_predict = ekf.predict(factor1);
      traits<Point2>::Print(x2_predict, "X2 Predict");
    
      // Update
      Point2 z2(2.0, 0.0);
      PriorFactor<Point2> factor4(x2, z2, R);
      Point2 x2_update = ekf.update(factor4);
      traits<Point2>::Print(x2_update, "X2 Update");
    
    
    
      // Do the same thing one more time...
      // Predict
      Symbol x3('x',3);
      difference = Point2(1,0);
      BetweenFactor<Point2> factor5(x2, x3, difference, Q);
      Point2 x3_predict = ekf.predict(factor5);
      traits<Point2>::Print(x3_predict, "X3 Predict");
    
      // Update
      Point2 z3(3.0, 0.0);
      PriorFactor<Point2> factor6(x3, z3, R);
      Point2 x3_update = ekf.update(factor6);
      traits<Point2>::Print(x3_update, "X3 Update");
    
      return 0;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95

    2.1 创建初始化的点

      Point2 x_initial(0.0, 0.0);
      SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
    
    • 1
    • 2

    2.2 初始化一个key

      // Create Key for initial pose
      Symbol x0('x',0);
    
    • 1
    • 2

    2.3 创建一个ekf类型

      // Create an ExtendedKalmanFilter object
      ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);
    
    • 1
    • 2

    构造函数参数列表:Key、初始值、噪声模型

    2.4 预测

    目的预测
    arg ⁡ max ⁡ x 1   P ( x 1 ) = P ( x 1 ∣ x 0 ) P ( x 0 ) \mathop{\arg\max}\limits_{x_{1}}\space P(x1) = P(x1|x0) P(x0) x1argmax P(x1)=P(x1∣x0)P(x0)
    在卡尔曼滤波中符号表示为
    x t + 1 ∣ t   a n d   P t + 1 ∣ t x_{t+1|t}\space and\space P_{t+1|t} xt+1∣t and Pt+1∣t
    运动方程
    f ( x t ) = x t + 1 ∣ t f(x_{t}) = x_{t+1|t} f(xt)=xt+1∣t
    将其线性展开
    f ( x t ) = F ∗ x t + B ∗ u t + w f(x_{t}) = F*x_{t} + B*u_{t} + w f(xt)=Fxt+But+w
    F F F->状态转移矩阵
    B B B->控制输入模型
    w w w是零均值,协方差矩阵 Q Q Q的高斯分布
    在一些模型中 Q = G ∗ w ∗ G T Q=G*w*G^T Q=GwGT, G G G表示的不确定性是从实际模型导出的

      Vector u = Vector2(1.0, 0.0);
      SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1), true);
    
      // This simple motion can be modeled with a BetweenFactor
      // Create Key for next pose
      Symbol x1('x',1);
      // Predict delta based on controls
      Point2 difference(1,0);
      // Create Factor
      BetweenFactor<Point2> factor1(x0, x1, difference, Q);
    
      // Predict the new value with the EKF class
      Point2 x1_predict = ekf.predict(factor1);
      traits<Point2>::Print(x1_predict, "X1 Predict");
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    2.5 更新/校正

    接收到观测后进行更新
    P ( x 1 ∣ z 1 ) ∼ P ( z 1 ∣ x 1 ) ∗ P ( x 1 ) P(x1|z1)\sim P(z1|x1)*P(x1) P(x1∣z1)P(z1∣x1)P(x1)
    在卡尔曼滤波中需要一个测量模型
    h ( x t ) = z ^ t h(x_{t}) = \hat{z}_{t} h(xt)=z^t
    线性展开: h ( x t ) = H ∗ x t + v h(x_{t}) = H*x_{t} + v h(xt)=Hxt+v
    H H H->观测模型
    v v v是零均值、协方差是 R R R的高斯白噪声模型

      SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector2(0.25, 0.25), true);
    
      // This simple measurement can be modeled with a PriorFactor
      Point2 z1(1.0, 0.0);
      PriorFactor<Point2> factor2(x1, z1, R);
    
      // Update the Kalman Filter with the measurement
      Point2 x1_update = ekf.update(factor2);
      traits<Point2>::Print(x1_update, "X1 Update");
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    2.6 重复预测更新过程

      // Do the same thing two more times...
      // Predict
      Symbol x2('x',2);
      difference = Point2(1,0);
      BetweenFactor<Point2> factor3(x1, x2, difference, Q);
      Point2 x2_predict = ekf.predict(factor1);
      traits<Point2>::Print(x2_predict, "X2 Predict");
    
      // Update
      Point2 z2(2.0, 0.0);
      PriorFactor<Point2> factor4(x2, z2, R);
      Point2 x2_update = ekf.update(factor4);
      traits<Point2>::Print(x2_update, "X2 Update");
    
    
    
      // Do the same thing one more time...
      // Predict
      Symbol x3('x',3);
      difference = Point2(1,0);
      BetweenFactor<Point2> factor5(x2, x3, difference, Q);
      Point2 x3_predict = ekf.predict(factor5);
      traits<Point2>::Print(x3_predict, "X3 Predict");
    
      // Update
      Point2 z3(3.0, 0.0);
      PriorFactor<Point2> factor6(x3, z3, R);
      Point2 x3_update = ekf.update(factor6);
      traits<Point2>::Print(x3_update, "X3 Update");
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
  • 相关阅读:
    react-router-dom6 路由懒加载与组件懒加载
    NR CSI(四) PMI
    Nginx全家桶配置详解
    离散数学·图的矩阵表示、平面图
    golang ES 聚合查询
    常用归一化/正则化层:InstanceNorm1d、InstanceNorm2d、
    【西瓜书学习】1、决策树
    Leetcode 142. 环形链表 II
    项目十一文件的应用
    【2023最新】微信小程序中微信授权登录功能和退出登录功能实现讲解
  • 原文地址:https://blog.csdn.net/weixin_43848456/article/details/127580261