调整亮度、对比度、饱和度和色相
调整亮度、对比度、饱和度和色相
调整亮度、对比度、饱和度和色相
补充:transform.invert 预处理逆操作
from PIL import Image
from torchvision import transforms
import torch
import numpy as np
def transform_invert(img_, transform_train):
"""
将data 进行反transfrom操作
:param img_: tensor
:param transform_train: torchvision.transforms
:return: PIL image
"""
if 'Normalize' in str(transform_train):
norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms))
mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device)
std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device)
img_.mul_(std[:, None, None]).add_(mean[:, None, None])
img_ = img_.transpose(0, 2).transpose(0, 1)
if 'ToTensor' in str(transform_train):
img_ = np.array(img_) * 255
if img_.shape[2] == 3:
img_ = Image.fromarray(img_.astype('uint8')).convert('RGB')
elif img_.shape[2] == 1:
img_ = Image.fromarray(img_.astype('uint8').squeeze())
else:
raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]))
return img_
if __name__ == '__main__':
img = Image.open(r"./test.jpg").convert('RGB')
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
print(img_tensor)
print(img_tensor.shape)
img = transform_invert(img_tensor, img_transform)
img.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
调整亮度、对比度、饱和度和色相:ColorJitter
功能:调整亮度、对比度、饱和度和色相
主要参数说明:
- brightness:亮度调整因子
当为a时,从[max(0, 1-a), 1 +a]中随机选择
当为(a, b)时,从[a, b]中 - contrast:对比度参数,同brightness
- saturation:饱和度参数,同brightness
- hue:色相参数,当为a时,从[-a, a]中选择参数,注:0<= a <= 0.5
原图
1.亮度调整
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.ColorJitter(brightness=0.5), # 亮度
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
2. 调整对比度
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.ColorJitter(contrast=0.1), # 对比度
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
3.调整饱和度
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.ColorJitter(saturation=0.1), # 饱和度
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
4.调整色相
from PIL import Image
from torchvision import transforms
from utils import transform_invert
if __name__ == '__main__':
# 1.读取图像
img = Image.open(r"./cat.png").convert('RGB')
# 2.确定预处理方式
img_transform = transforms.Compose([## transforms.Resize((300,300)), # 重置大小为300*300
transforms.ColorJitter(hue=0.8), # 色相
transforms.ToTensor() # 转Tensor型变量
])
# 3.进行预处理
img_tensor = img_transform(img)
# 4.逆Transform变换
img = transform_invert(img_tensor, img_transform) # input: shape=[c h w]
# 5.进行预处理效果展示
img.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20