已知 y = ( 2 x − 1 ) 5 ( 3 x + 7 ) 7 y=(2x-1)^5(3x+7)^7 y=(2x−1)5(3x+7)7,则 y ( 12 ) = ‾ y^{(12)}=\underline{\qquad} y(12)=, y ( 13 ) = ‾ y^{(13)}=\underline{\qquad} y(13)=
解题思路:这道题看上去很吓人,再一看就能发现要求的导数的求导次数都大于等于 x x x的最高次数,所以我们只需要求出 x x x的最高次数的系数,其余的系数都不需要求
解:
设
y
=
∑
k
=
0
12
a
k
x
k
y=\sum\limits_{k=0}^{12}a_kx^k
y=k=0∑12akxk
则
y
(
12
)
=
∑
k
=
0
12
(
a
k
x
k
)
′
y^{(12)}=\sum\limits_{k=0}^{12}(a_kx^k)'
y(12)=k=0∑12(akxk)′
∵
\because
∵ 当
k
<
n
k
∴
y
(
12
)
=
(
a
12
x
12
)
(
12
)
=
a
12
(
x
12
)
(
12
)
=
a
12
×
12
!
\therefore y^{(12)}=(a_{12}x^{12})^{(12)}=a_{12}(x^{12})^{(12)}=a_{12}\times12!
∴y(12)=(a12x12)(12)=a12(x12)(12)=a12×12!
∵
y
=
(
2
x
−
1
)
5
(
3
x
+
7
)
7
\because y=(2x-1)^5(3x+7)^7
∵y=(2x−1)5(3x+7)7
∴
a
12
=
2
5
×
3
7
\therefore a_{12}=2^5\times 3^7
∴a12=25×37
∴
y
(
12
)
=
2
5
×
3
7
×
12
!
\therefore y^{(12)}=2^5\times 3^7\times 12!
∴y(12)=25×37×12!,
y
(
13
)
=
(
y
(
12
)
)
′
=
0
y^{(13)}=(y^{(12)})'=0
y(13)=(y(12))′=0