• Java实现7种常见密码算法


    原创:扣钉日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处。

    简介#

    前面在密码学入门一文中讲解了各种常见的密码学概念、算法与运用场景,但没有介绍过代码,因此,为作补充,这一篇将会介绍使用Java语言如何实现使用这些算法,并介绍一下使用过程中可能遇到的坑。

    Java加密体系JCA#

    Java抽象了一套密码算法框架JCA(Java Cryptography Architecture),在此框架中定义了一套接口与类,以规范Java平台密码算法的实现,而Sun,SunRsaSign,SunJCE这些则是一个个JCA的实现Provider,以实现具体的密码算法,这有点像List与ArrayList、LinkedList的关系一样,Java开发者只需要使用JCA即可,而不用管具体是怎么实现的。

    JCA里定义了一系列类,如Cipher、MessageDigest、MAC、Signature等,分别用于实现加密、密码学哈希、认证码、数字签名等算法,一起来看看吧!

    对称加密#

    对称加密算法,使用Cipher类即可,以广泛使用的AES为例,如下:

    public byte[] encrypt(byte[] data, Key key) {
        try {
            Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
            byte[] iv = SecureRandoms.randBytes(cipher.getBlockSize());
            //初始化密钥与加密参数iv
            cipher.init(Cipher.ENCRYPT_MODE, key, new IvParameterSpec(iv));
            //加密
            byte[] encryptBytes = cipher.doFinal(data);
            //将iv与密文拼在一起
            ByteArrayOutputStream baos = new ByteArrayOutputStream(iv.length + encryptBytes.length);
            baos.write(iv);
            baos.write(encryptBytes);
            return baos.toByteArray();
        } catch (Exception e) {
            return ExceptionUtils.rethrow(e);
        }
    }
    
    public byte[] decrypt(byte[] data, Key key) {
        try {
            Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
            //获取密文前面的iv
            IvParameterSpec ivSpec = new IvParameterSpec(data, 0, cipher.getBlockSize());
            cipher.init(Cipher.DECRYPT_MODE, key, ivSpec);
            //解密iv后面的密文
            return cipher.doFinal(data, cipher.getBlockSize(), data.length - cipher.getBlockSize());
        } catch (Exception e) {
                    return ExceptionUtils.rethrow(e);
        }
    }
    

    如上,对称加密主要使用Cipher,不管是AES还是DES,Cipher.getInstance()传入不同的算法名称即可,这里的Key参数就是加密时使用的密钥,稍后会介绍它是怎么来的,暂时先忽略它。
    另外,为了使得每次加密出来的密文不同,我使用了随机的iv向量,并将iv向量拼接在了密文前面。

    注:如果某个算法名称,如上面的AES/CBC/PKCS5Padding,你不知道它在JCA中的标准名称是什么,可以到 https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html 中查询即可。

    非对称加密#

    非对称加密同样是使用Cipher类,只是传入的密钥对象不同,以RSA算法为例,如下:

    public byte[] encryptByPublicKey(byte[] data, PublicKey publicKey){
        try{
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            return cipher.doFinal(data);
        }catch (Exception e) {
            throw Errors.toRuntimeException(e);
        }
    }
    
    public byte[] decryptByPrivateKey(byte[] data, PrivateKey privateKey){
        try{
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            return cipher.doFinal(data);
        }catch (Exception e) {
            throw Errors.toRuntimeException(e);
        }
    }
    

    一般来说应使用公钥加密,私钥解密,但其实反过来也是可以的,这里的PublicKey与PrivateKey也先忽略,后面会介绍它怎么来的。

    密码学哈希#

    密码学哈希算法包括MD5、SHA1、SHA256等,在JCA中都使用MessageDigest类即可,如下:

    public static String sha256(byte[] bytes) throws NoSuchAlgorithmException {
        MessageDigest digest = MessageDigest.getInstance("SHA-256");
        digest.update(bytes);
        return Hex.encodeHexString(digest.digest());
    }
    

    消息认证码#

    消息认证码使用Mac类实现,以常见的HMAC搭配SHA256为例,如下:

    public byte[] digest(byte[] data, Key key) throws InvalidKeyException, NoSuchAlgorithmException{
        Mac mac = Mac.getInstance("HmacSHA256");
        mac.init(key);
        return mac.doFinal(data);
    }
    

    数字签名#

    数字签名使用Signature类实现,以RSA搭配SHA256为例,如下:

    public byte[] sign(byte[] data, PrivateKey privateKey) {
        try {
            Signature signature = Signature.getInstance("SHA256withRSA");
            signature.initSign(privateKey);
            signature.update(data);
            return signature.sign();
        } catch (Exception e) {
            return ExceptionUtils.rethrow(e);
        }
    }
    
    public boolean verify(byte[] data, PublicKey publicKey, byte[] sign) {
        try {
            Signature signature = Signature.getInstance("SHA256withRSA");
            signature.initVerify(publicKey);
            signature.update(data);
            return signature.verify(sign);
        } catch (Exception e) {
            return ExceptionUtils.rethrow(e);
        }
    }
    

    密钥协商算法#

    在JCA中,使用KeyAgreement来调用密钥协商算法,以ECDH协商算法为例,如下:

    public static void testEcdh() {
        KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");
        ECGenParameterSpec ecSpec = new ECGenParameterSpec("secp256r1");
        keyGen.initialize(ecSpec);
        // A生成自己的私密信息
        KeyPair keyPairA = keyGen.generateKeyPair();
        KeyAgreement kaA = KeyAgreement.getInstance("ECDH");
        kaA.init(keyPairA.getPrivate());
        // B生成自己的私密信息
        KeyPair keyPairB = keyGen.generateKeyPair();
        KeyAgreement kaB = KeyAgreement.getInstance("ECDH");
        kaB.init(keyPairB.getPrivate());
    
        // B收到A发送过来的公用信息,计算出对称密钥
        kaB.doPhase(keyPairA.getPublic(), true);
        byte[] kBA = kaB.generateSecret();
    
        // A收到B发送过来的公开信息,计算对对称密钥
        kaA.doPhase(keyPairB.getPublic(), true);
        byte[] kAB = kaA.generateSecret();
        Assert.isTrue(Arrays.equals(kBA, kAB), "协商的对称密钥不一致");
    }
    

    基于口令加密PBE#

    通常,对称加密算法需要使用128位字节的密钥,但这么长的密钥用户是记不住的,用户容易记住的是口令,也即password,但与密钥相比,口令有如下弱点:

    1. 口令通常较短,这使得直接使用口令加密的强度较差。
    2. 口令随机性较差,因为用户一般使用较容易记住的东西来生成口令。

    为了使得用户能直接使用口令加密,又能最大程度避免口令的弱点,于是PBE(Password Based Encryption)算法诞生,思路如下:

    1. 既然密码算法需要密钥,那在加解密前,先使用口令生成密钥,然后再使用此密钥去加解密。
    2. 为了弥补口令随机性较差的问题,生成密钥时使用随机盐来混淆口令来产生准密钥,再使用散列函数对准密钥进行多次散列迭代,以生成最终的密钥。

    因此,使用PBE算法进行加解密时,除了要提供口令外,还需要提供随机盐(salt)与迭代次数(iteratorCount),如下:

    public static byte[] encrypt(byte[] plainBytes, String password, byte[] salt, int iteratorCount) {
        try {
            PBEKeySpec keySpec = new PBEKeySpec(password.toCharArray());
            SecretKey key = SecretKeyFactory.getInstance("PBEWithMD5AndTripleDES").generateSecret(keySpec);
    
            Cipher cipher = Cipher.getInstance("PBEWithMD5AndTripleDES");
            cipher.init(Cipher.ENCRYPT_MODE, key, new PBEParameterSpec(salt, iteratorCount));
            byte[] encryptBytes = cipher.doFinal(plainBytes);
            byte[] iv = cipher.getIV();
            ByteArrayOutputStream baos = new ByteArrayOutputStream(iv.length + encryptBytes.length);
            baos.write(iv);
            baos.write(encryptBytes);
            return baos.toByteArray();
        } catch (Exception e) {
            throw Errors.toRuntimeException(e);
        }
    }
    
    public static byte[] decrypt(byte[] secretBytes, String password, byte[] salt, int iteratorCount) {
        try {
            PBEKeySpec keySpec = new PBEKeySpec(password.toCharArray());
            SecretKey key = SecretKeyFactory.getInstance("PBEWithMD5AndTripleDES").generateSecret(keySpec);
    
            Cipher cipher = Cipher.getInstance("PBEWithMD5AndTripleDES");
            IvParameterSpec ivParameterSpec = new IvParameterSpec(secretBytes, 0, cipher.getBlockSize());
            cipher.init(Cipher.DECRYPT_MODE, key, new PBEParameterSpec(salt, iteratorCount, ivParameterSpec));
            return cipher.doFinal(secretBytes, cipher.getBlockSize(), secretBytes.length - cipher.getBlockSize());
        } catch (Exception e) {
            throw Errors.toRuntimeException(e);
        }
    }
    
    public static void main(String[] args) throws Exception {
        byte[] content = "hello".getBytes(StandardCharsets.UTF_8);
        byte[] salt = Base64.decode("QBadPOP6/JM=");
        String password = "password";
        byte[] encoded = encrypt(content, password, salt, 1000);
        System.out.println("密文:" + Base64.encode(encoded));
        byte[] plainBytes = decrypt(encoded, password, salt, 1000);
        System.out.println("明文:" + new String(plainBytes, StandardCharsets.UTF_8));
    }
    

    注意,虽然使用PBE加解密数据,都需要使用相同的password、salt、iteratorCount,但这里面只有password是需要保密的,salt与iteratorCount不需要,可以保存在数据库中,比如每个用户注册时给他生成一个随机盐。

    到此,JCA密码算法就介绍完了,来回顾一下:
    image_2022-09-04_20220904160510

    整体来说,JCA对密码算法相关的类设计与封装还是非常清晰简单的!

    但使用密码算法时,依赖SecretKey、PublicKey、PrivateKey对象提供密钥信息,那这些密钥对象是怎么来的呢?

    密钥生成与读取#

    密码学随机数#

    密码学随机数算法在安全场景中使用广泛,如:生成对称密钥、盐、iv等,因此相比普通的随机数算法(如线性同余),它需要更高强度的不可预测性,在Java中,使用SecureRandom来生成更安全的随机数,如下:

    public class SecureRandoms {
    	public static byte[] randBytes(int len) throws NoSuchAlgorithmException {
    		byte[] bytes = new byte[len];
    		SecureRandom secureRandom = SecureRandom.getInstance("SHA1PRNG");
    		secureRandom.nextBytes(bytes);
    		return bytes;
    	}
    }
    

    SecureRandom使用了更高强度的随机算法,同时会读取机器本身的随机熵值,如/dev/urandom,因此相比普通的Random,它具有更强的随机性,因此,对于需要生成密钥的场景,该用哪个要拧得清。

    对称密钥#

    在JCA中对称密钥使用SecretKey表示,若要生成一个新的SecretKey,可使用KeyGenerator,如下:

    //生成新的密钥
    public static SecretKey genSecretKey() {
        KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
        keyGenerator.init(SecureRandom.getInstance("SHA1PRNG"));
        SecretKey secretKey = keyGenerator.generateKey();
    }
    

    而如果是从文件中读取密钥的话,则可以借助SecretKeyFactory将其转换为SecretKey,如下:

    //读取密钥
    public static SecretKey getSecretKey() {
        byte[] keyBytes = readKeyBytes();
        String alg = "AES";
        SecretKey secretKey = SecretKeyFactory.getInstance(alg).generateSecret(new SecretKeySpec(keyBytes, alg));
    }
    

    非对称密钥#

    在JCA中,对于非对称密钥,公钥使用PublicKey表示,私钥使用PrivateKey表示,若要生成一个新的公私钥对,可使用KeyPairGenerator,如下:

    //生成新的公私钥对
    public static void genKeyPair() {
        KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA");
        keyPairGen.initialize(2048);
        KeyPair keyPair = keyPairGen.generateKeyPair();
        PublicKey publicKey = keyPair.getPublic();
        PrivateKey privateKey = keyPair.getPrivate();
    }
    

    而如果是从文件中读取公私钥的话,一般公钥是X509格式,而私钥是PKCS8格式,分别对应JCA中的X509EncodedKeySpec与PKCS8EncodedKeySpec,如下:

    //读取私钥
    public static PrivateKey getPrivateKey() {
        byte[] privateKeyBytes = readPrivateKeyBytes();
        PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(privateKeyBytes);
        PrivateKey privateKey = KeyFactory.getInstance("RSA").generatePrivate(pkcs8EncodedKeySpec);
    }
    
    //读取公钥
    public static PublicKey getPublicKey() {
        byte[] publicKeyBytes = readPublicKeyBytes();
        X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(publicKeyBytes);
        PublicKey publicKey = KeyFactory.getInstance("RSA").generatePublic(x509EncodedKeySpec);
    }
    

    注意,KeyGenerator、KeyPairGenerator与KeyFactory从命名上看起来有点相似,但它们实现的功能是完全不同的,KeyGenerator、KeyPairGenerator用于生成新的密钥,而KeyFactory则用于将KeySpec转换为对应的Key密钥对象。

    JCA密钥相关类关系一览,如下:
    secret_key
    image_2022-09-04_20220904160242

    常见问题#

    密文无法解密问题#

    有时,在使用密码算法时,会发现别人提供的密文使用正确的密钥却无法解密出来,特别容易发生在跨语言的情况下,如加密方使用的C#语言,而解密方却使用的Java。

    遇到这种情况,你需要和对方认真确认加密时使用的加密模式、填充模式以及IV等密码参数是否完全一致。

    如AES算法加密模式有ECBCBCCFBCTRGCM等,填充模式有PKCS#5, ISO 10126, ANSI X9.23等,以及对方是使用了固定的IV向量还是将IV向量拼在了密文中,这些都需要确认清楚并与对方保持一致才能正确解密。

    签名失败问题#

    签名失败也是使用密码算法时常见的情况,比如对方生成的MD5值与你生成的MD5不一致,常见有2种原因,如下:
    1. 使用的字符编码不一致导致
    密码算法为了通用性,操作对象都是字节数组,而你要签名的对象一般是字符串,因此你需要将字符串转为字节数组之后再做md5运算,如下:

    • 调用方:md5(str.getBytes())
    • 服务方:md5(str.getBytes())

    看起来两边的代码一模一样,但问题就在getBytes()函数中,getBytes()函数默认会使用操作系统的字符编码将字符串转为字节数组,而中文Windows默认字符编码是GBK,而Linux默认是UTF-8,这就导致当str中有中文时,调用方与服务方获取到的字节数组是不一样的,那生成的MD5值当然也不一样了。

    因此,强烈推荐在使用getBytes()函数时,传入统一的字符编码,如下:

    • 调用方:md5(str.getBytes("UTF-8"))
    • 服务方:md5(str.getBytes("UTF-8"))
      这样就能有效地避过这个非常隐晦的坑了。

    2. json的escape功能导致
    有些json框架,做json序列化时会默认做一些转义操作,如把&字符转义为\u0026,但如果服务端做json反序列化时没有做反转义,这会导致两边计算的签名值不一样,如下:

    • 调用方:md5("&")
    • 服务方:md5("\\u0026")
      这也是一个非常隐晦的坑,如Gson默认就会有这种行为,可使用new GsonBuilder().disableHtmlEscaping()禁用。

    生成与读取证书#

    概念#

    随着对密码学了解的深入,会发现有特别多奇怪的名词出现,让人迷惑不已,如PKCS8X.509ASN.1DERPEM等,接下来就来澄清下这些名词是什么,以及它们之间的关系。

    首先,了解3个概念,如下:

    • 密钥:包括对称密钥与非对称密钥等。
    • 证书:包含用户或网站的身份信息、公钥,以及CA的签名。
    • 密钥库:用于存储密钥与证书的仓库。

    ASN.1语法#

    ASN.1抽象语法标记(Abstract Syntax Notation One),和XML、JSON类似,用于描述对象结构,可以把它看成一种描述语言,简单的示例如下:

    Report ::= SEQUENCE {
    author OCTET STRING,
    title OCTET STRING,
    body OCTET STRING,
    }
    

    这个语法描述了一个结构体,它包含3个属性author、title、body,且都是字符串类型。

    DER与PEM#

    DER是ASN.1的一种序列化编码方案,也就是说ASN.1用来描述对象结构,而DER用于将此对象结构编码为可存储的字节数组。

    PEM(Privacy Enhanced Mail)是一种将二进制数据,以文本形式进行存储或传输的方案,早期主要用于邮件中交换证书,它的文本内容常以-----BEGIN XXX-----开头,并以-----END XXX-----结尾,而中间 Body 部分则为 Base64 编码后的数据,如下是一个证书的PEM样例。
    PEM

    以上面证书为例,PEM与DER的关系大概如下:

    PEM = "-----BEGIN CERTIFICATE-----" + base64(DER) +  "-----END CERTIFICATE-----"
    

    X.509、PKCS8、PKCS12等#

    X.509、PKCS8、PKCS12等都是公钥密码学标准(PKCS)组织制定的各种密码学规范,该组织使用ASN.1语法为密钥、证书、密钥库等定义了标准的对象结构,常见的如下:

    • X.509规范:用于描述证书与公钥的标准格式。
    • PKCS7规范:可描述的对象很多,不过一般也是用于描述证书的。
    • PKCS8规范:用于描述私钥的标准格式。
    • PKCS12规范:用于描述密钥库的标准格式。
    • PKCS1规范:用于描述RSA算法及其公私钥的标准格式。

    这些规范都有相应的RFC文档,感兴趣的可以前往查看:

    PEM:https://www.rfc-editor.org/rfc/rfc7468   
    X.509:https://datatracker.ietf.org/doc/html/rfc5280  
    PKCS7:https://datatracker.ietf.org/doc/html/rfc2315  
    PKCS8:https://datatracker.ietf.org/doc/html/rfc8351  
    PKCS12:https://datatracker.ietf.org/doc/html/rfc7292  
    PKCS1:https://datatracker.ietf.org/doc/html/rfc8017#appendix-A  
    

    类比一下,如果把ASN.1比作Java,那X.509就是使用Java定义的一个名叫X509的类,这个类里面包含身份信息、公钥信息等相关字段,而DER就是一种Java对象序列化方案,用于将X509这个类的对象序列化为字节数组,字节数组保存为文件后,这个文件就是我们常说的证书或密钥文件。

    常见证书文件#

    由于PKCS组织并未给证书文件定下标准的文件名后缀,所以证书文件有非常多的后缀名,如下:

    • .der: DER编码的证书,一般是X.509规范的,无法用文本编辑器直接打开
    • .pem: PEM编码的证书,一般是X.509规范的
    • .crt: 常见于unix类系统,一般是X.509规范的,可能是DER编码或PEM编码
    • .cer: 常见于windows系统,一般是X.509规范的,可能是DER编码或PEM编码
    • .p7b: 常见于windows系统,PKCS7规范证书,可能是DER编码或PEM编码
    • .pfx:PKCS12规范的密钥库文件,也有取名为.p12的
    • .jks:java专用的密钥库文件格式,在java技术栈内使用较多,非java一般使用.pfx

    证书概念小结#

    Certificate

    生成证书与密钥库#

    openssl命令提供了大量的工具,用以生成密钥、证书与密钥库文件,如下,是一个典型的生成密钥与证书的过程:

    # 生成pkcs1 rsa私钥
    openssl genrsa -out rsa_private_key_pkcs1.key 2048
    # 生成pkcs1 rsa公钥
    openssl rsa -in rsa_private_key_pkcs1.key -RSAPublicKey_out -out rsa_public_key_pkcs1.key
    
    # 生成证书申请文件cert.csr
    openssl req -new -key rsa_private_key_pkcs1.key -out cert.csr
    # 自签名(演示时使用,生产环境一般不用自签证书)  
    openssl x509 -req -days 365 -in cert.csr -signkey rsa_private_key_pkcs1.key -out cert.crt
    # ca签名(将证书申请文件提交给ca机构签名)
    openssl x509 -req -days 365 -in cert.csr -CA ca_cert.crt -CAkey ca_private_key.pem -CAcreateserial -out cert.crt
    
    # 生成p12密钥库文件
    openssl pkcs12 -export -in cert.crt -inkey rsa_private_key_pkcs1.key -name demo -out keystore.p12
    

    有时别人发来的密钥或证书文件无法读取,也可使用openssl确认一下,如果openssl能读出来,那大概率是自己程序有问题,如果openssl读不出来,那大概率是别人发的文件有问题,如下:

    # 查看pkcs1 rsa私钥
    openssl rsa -in rsa_private_key_pkcs1.key -text -noout
    # 查看pkcs1 rsa公钥
    openssl rsa -RSAPublicKey_in -in rsa_public_key_pkcs1.key -text -noout
    
    # 查看x.509证书
    openssl x509 -in cert.crt -text -nocert
    
    # 查看pkcs12密钥库文件
    openssl pkcs12 -in keystore.p12
    keytool -v -list -storetype pkcs12 -keystore keystore.p12
    

    由于密钥、证书、密钥库文件,其实都是使用ASN.1语法描述的,所以它们都能按ASN.1语法解析出来,如下:

    openssl asn1parse -i -inform pem -in cert.crt
    

    证书格式转换#

    某些情况下,我们需要在不同格式的密钥或证书文件之间转换,也可使用openssl命令来完成。
    密钥格式转换,如下:

    # rsa公钥转换为X509公钥
    openssl rsa -RSAPublicKey_in -in rsa_public_key_pkcs1.key -pubout -out public_key_x509.key
    # rsa私钥转换为PKCS8格式
    openssl pkcs8 -topk8 -inform PEM -in rsa_private_key_pkcs1.key -outform PEM -nocrypt -out private_key_pkcs8.key
    # pkcs8转rsa私钥
    openssl pkcs8 -inform PEM -nocrypt -in private_key_pkcs8.key -traditional -out rsa_private_key_pkcs1.key
    

    证书格式转换,如下:

    # 证书DER转PEM
    openssl x509 -inform der -in cert.der -outform pem -out cert.pem -noout
    # x509证书转pkcs7证书
    openssl crl2pkcs7 -nocrl -certfile cert.crt -out cert.p7b
    # 查看pkcs7证书
    openssl pkcs7 -print_certs -in cert.p7b -noout
    

    由于密钥库中包含证书与私钥,故可以从密钥库文件中提取出证书与私钥,如下:

    # 从pkcs12密钥库中提取证书
    openssl pkcs12 -in keystore.p12 -clcerts -nokeys -out cert.crt
    # 从pkcs12密钥库中提取私钥
    openssl pkcs12 -in keystore.p12 -nocerts -nodes -out private_key.key
    # pkcs12转jks
    keytool -importkeystore -srckeystore keystore.p12 -srcstoretype pkcs12 -srcalias demo -destkeystore keystore.jks -deststoretype jks -deststorepass 123456 -destalias demo
    # 从jks中提取证书
    keytool -export -alias demo -keystore keystore.jks -file cert.crt
    

    读取密钥或证书文件#

    使用JCA来读取密钥或证书文件,也是非常方便的。

    PEM转DER#

    若要将PEM格式文件转换为DER,只需要把---BEGIN XXX------END XXX---去掉,然后使用Base64解码即可,如下:

    private static byte[] pemFileToDerBytes(String pemFilePath) throws IOException {
        InputStream is = ClassLoader.getSystemClassLoader().getResourceAsStream(pemFilePath);
        String pemStr = StreamUtils.copyToString(is, StandardCharsets.UTF_8);
        //去掉---BEGIN XXX---与---END XXX---
        pemStr = pemStr.replaceAll("---+[^-]+---+", "")
                .replaceAll("\\s+", "");
        //base64解码为DER二进制内容
        return Base64.getDecoder().decode(pemStr);
    }
    

    读取PKCS8私钥#

    在JCA中,使用PKCS8EncodedKeySpec解析PKCS8私钥文件,如下:

    public static void testPkcs8PrivateKeyFile() {
        byte[] derBytes = pemFileToDerBytes("cert/private_key_pkcs8.key");
        PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(derBytes);
        RSAPrivateCrtKey rsaPrivateCrtKey = (RSAPrivateCrtKey)KeyFactory.getInstance("RSA").generatePrivate(pkcs8EncodedKeySpec);
        BigInteger n = rsaPrivateCrtKey.getModulus();
        BigInteger e = rsaPrivateCrtKey.getPublicExponent();
        BigInteger d = rsaPrivateCrtKey.getPrivateExponent();
        System.out.printf(" n: %X \n e: %X \n d: %X \n", n, e, d);
        BigInteger plain = BigInteger.valueOf(new Random().nextInt(1000000000));
        // RSA加密
        long t1 = System.nanoTime();
        BigInteger secret = plain.modPow(e, n);
        long t2 = System.nanoTime();
        // RSA解密
        BigInteger plain2 = secret.modPow(d, n);
        long t3 = System.nanoTime();
        System.out.printf(" plain: %d \n plain2: %d \n", plain, plain2);
        System.out.printf("enc time: %d \n", (t2 - t1));
        System.out.printf("dec time: %d \n", (t3 - t2));
    }
    

    读取X.509公钥#

    在JCA中,使用X509EncodedKeySpec解析X.509公钥文件,如下:

    public static void testX509PublicKeyFile() {
        byte[] derBytes = pemFileToDerBytes("cert/public_key_x509.key");
        X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(derBytes);
        RSAPublicKey rsaPublicKey = (RSAPublicKey)KeyFactory.getInstance("RSA").generatePublic(x509EncodedKeySpec);
        BigInteger e = rsaPublicKey.getPublicExponent();
        BigInteger n = rsaPublicKey.getModulus();
        System.out.printf(" e: %X \n n: %X \n", e, n);
    }
    

    读取X.509证书#

    读取X.509证书文件,可使用CertificateFactory类,如下:

    public static void testX509CertFile() {
        byte[] derBytes = pemFileToDerBytes("cert/cert.crt");
        Collectionextends Certificate> certificates = CertificateFactory.getInstance("X.509")
                .generateCertificates(new ByteArrayInputStream(derBytes));
        for(Certificate certificate : certificates){
            X509Certificate x509Certificate = (X509Certificate)certificate;
            System.out.printf("SubjectDN: %s \n", x509Certificate.getSubjectDN());
            System.out.printf("IssuerDN: %s \n", x509Certificate.getIssuerDN());
            System.out.printf("SigAlgName: %s \n", x509Certificate.getSigAlgName());
            System.out.printf("Signature: %s \n", Hex.encodeHexString(x509Certificate.getSignature()));
            System.out.printf("PublicKey: %s \n", x509Certificate.getPublicKey());
        }
    }
    

    读取PKCS12密钥库文件#

    读取PKCS12规范的密钥库文件,可使用KeyStore类,如下:

    public static void testPkcs12File() {
        KeyStore keyStore = KeyStore.getInstance("PKCS12");
        InputStream is = ClassLoader.getSystemClassLoader().getResourceAsStream("cert/keystore.p12");
        char[] password = "123456".toCharArray();
        keyStore.load(is, password);
        //获取证书
        X509Certificate x509Certificate = (X509Certificate)keyStore.getCertificate("demo");
        System.out.println("X509Certificate: ");
        System.out.printf("SubjectDN: %s \n", x509Certificate.getSubjectDN());
        System.out.printf("IssuerDN: %s \n", x509Certificate.getIssuerDN());
        System.out.printf("SigAlgName: %s \n", x509Certificate.getSigAlgName());
        System.out.printf("Signature: %s \n", Hex.encodeHexString(x509Certificate.getSignature()));
        System.out.printf("PublicKey: %s \n", x509Certificate.getPublicKey());
        //获取私钥
        Key key = keyStore.getKey("demo", password);
        System.out.printf("PrivateKey: %s \n", key);
    }
    

    如果要读取.jks文件,只需要将KeyStore.getInstance("PKCS12")中的PKCS12更换为JKS即可,其它部分保持不变,不过由于JKS是java专有格式,目前java也不推荐使用了,所以能不用的话,就尽量不要用了。

    常见问题#

    证书信任问题#

    证书的绝大多数应用场景是Https协议,但在访问https接口时,有时会由于证书信任问题导致https握手失败,主要有以下2点原因:

    1. 有些公司会自建CA,使用自签证书,如早期的12306,而jdk只信任它预置的根证书,所以https握手时这种证书会认证失败。
    2. 新成立的根CA机构证书,没预置在旧的jdk里面,导致这些CA机构签发的证书不被信任。

    要解决这种证书信任问题,有两种方法,如下:
    1. 将证书导致到jdk的预置证书库中

    # 将cert.crt导入jdk预置密钥库文件,密钥库文件密码默认是changeit
    sudo keytool -importcert -file cert.crt -alias demo -keystore $JAVA_HOME/jre/lib/security/cacerts -storepass changeit
    
    # 查看密钥库文件,检查是否导入成功
    keytool -list -v -alias demo -keystore $JAVA_HOME/jre/lib/security/cacerts -storepass changeit
    

    2. 以编码的方式信任证书
    以jdk自带的https sdk为例,可在代码中手动将问题证书添加到信任列表中,如下:

    public String testReqHttpsTrustCert() throws Exception {
        // 读取jdk预置证书
        KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());
        try(InputStream ksIs = new FileInputStream(System.getProperty("java.home") + "/lib/security/cacerts")) {
            keyStore.load(ksIs, "changeit".toCharArray());
        }
    
        // 读取证书文件
        CertificateFactory cf = CertificateFactory.getInstance("X.509");
        try(InputStream certIs = this.getClass().getResourceAsStream("/cert/cert.crt")) {
            Certificate c = cf.generateCertificate(certIs);
            keyStore.setCertificateEntry("demo", c);
        }
    
        // 生成信任管理器
        TrustManagerFactory tmFact = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());
        tmFact.init(keyStore);
    
        // 生成SSLSocketFactory
        SSLContext sslContext = SSLContext.getInstance("TLSv1.2");
        sslContext.init(null, tmFact.getTrustManagers(), new SecureRandom());
        SSLSocketFactory ssf = sslContext.getSocketFactory();
    
        // 发送https请求
        URL url = new URL("https://www.demo.com/user/list");
        HttpsURLConnection connection = (HttpsURLConnection) url.openConnection();
        connection.setHostnameVerifier((hostname, session) -> hostname.endsWith("demo.com"));
        connection.setSSLSocketFactory(ssf);
    
        String result;
        try(InputStream inputStream = connection.getInputStream()){
            result = IOUtils.toString(inputStream, StandardCharsets.UTF_8);
        }
        connection.disconnect();
        return result;
    }
    

    注:虽然2种方法都可以解决问题,但第1种方法使得java程序对环境形成了依赖,一旦部署环境发生变化,java程序可能就报错了,因此更推荐使用第2种方法。

    总结#

    到这里,JCA相关类的使用就介绍完了,如下表格中总结了JCA的常用类:
    JCA

    本篇花了近一周时间整理,内容较多,对这块不太熟悉的同学,可以先关注收藏起来当示例手册,待需要时再参阅即可。

  • 相关阅读:
    1553B环境搭建
    数据结构与算法-第七章 查找
    工业物联网网关助力热力供暖行业实现碳中和
    基于Springboot+Vue的Java项目-家政服务平台系统开发实战(附演示视频+源码+LW)
    HTTPS原理及配置
    linux安装mysql
    SPI 实验
    CVPR2023新作:源数据集对迁移学习性能的影响以及相应的解决方案
    SUSE12安装SAP HANA 2.0内存数据库
    Spring Cloud 常用框架组件
  • 原文地址:https://www.cnblogs.com/codelogs/p/16815708.html