• (pytorch进阶之路)IDDPM之diffusion实现


    概述

    DM beat GANs作者改进了DDPM模型,提出了三个改进点,目的是提高在生成图像上的对数似然

    第一个改进点方差改成了可学习的,预测方差线性加权的权重

    第二个改进点将噪声方案的线性变化变成了非线性变换

    第三个改进点将loss做了改进,Lhybrid = Lsimple+λLvlb(MSE loss+KL loss),采用了loss平滑的方法,基于loss算出重要性来采样t(不再是均匀采样t),Lvlb不直接采用Lt,而是Lt除以归一化的值pt(∑pt=1),pt是Lt平方的期望值的平方根,基于Lt最近的十个值,更少的采样步骤实现同样的效果

    Lvlb,变分下界,L0加到Lt可拆解为3部分
    L0 x1预测x0
    0到t-1之间的,后验分布,神经网络预测的KL散度
    Lt,由于一开始是一个先验的标准分布,不含参的,不参与神经网络优化
    在这里插入图片描述

    论文地址:
    https://arxiv.org/abs/2102.09672
    https://arxiv.org/pdf/2102.09672.pdf

    项目地址:
    https://github.com/openai/improved-diffusion

    那么εθ的NN模型输入xt和t,输出的量和xt是保持一致的,

    这里的NN模型用的是attention-based Unet,但不是本篇的重点,可以看另一篇博客

    代码实现

    项目地址:
    https://github.com/openai/improved-diffusion

    image_trian.py

    image_train.py编写了大体的训练结构框架,只有短短的几行代码

    def main()中
    首先create_argparser

    	args = create_argparser().parse_args()
        dist_util.setup_dist()
        logger.configure()
        logger.log("creating model and diffusion...")
    
    • 1
    • 2
    • 3
    • 4

    create_argparser函数中定义了字典,数据目录,学习率一些默认的超参数,dict会更新,来源于model_and_diffusion_defaults函数,其返回也是一个字典,但是其键值对和模型和扩散相关的参数,创建argumentParser,遍历字典添加到argparser中,这样省的我们一个个去写手写add_argument,是一个很好的学习的简洁写法

    def create_argparser():
        defaults = dict(
            data_dir="",
            schedule_sampler="uniform",
            lr=1e-4,
            weight_decay=0.0,
            lr_anneal_steps=0,
            batch_size=1,
            microbatch=-1,  # -1 disables microbatches
            ema_rate="0.9999",  # comma-separated list of EMA values
            log_interval=10,
            save_interval=10000,
            resume_checkpoint="",
            use_fp16=False,
            fp16_scale_growth=1e-3,
        )
        defaults.update(model_and_diffusion_defaults())
        parser = argparse.ArgumentParser()
        add_dict_to_argparser(parser, defaults)
        return parser
    
    def add_dict_to_argparser(parser, default_dict):
        for k, v in default_dict.items():
            v_type = type(v)
            if v is None:
                v_type = str
            elif isinstance(v, bool):
                v_type = str2bool
            parser.add_argument(f"--{k}", default=v, type=v_type)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30

    回到main函数,create_model_and_diffusion,得到unet model和diffusion框架,传入的参数是args_to_dict函数的**,args很大超参数,key只需要model和diffusion的部分

    	model, diffusion = create_model_and_diffusion(
            **args_to_dict(args, model_and_diffusion_defaults().keys())
        )
        model.to(dist_util.dev())
        schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
    返回的是一个采样器,可以是均匀采样,uniform,或者是基于loss重要性采样,二阶动量平滑loss,loss-second-moment

    	logger.log("creating data loader...")
        data = load_data(
            data_dir=args.data_dir,
            batch_size=args.batch_size,
            image_size=args.image_size,
            class_cond=args.class_cond,
        )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    load_data函数, 返回的图片,list image files recursively,递归的找到所有图片文件,对data dir下的都遍历一遍,class_cond,类别判断,找到图片的每个类别,假设文件名的下划线的第一部分就是类别,用split做分割,将class排序设置索引,最终模型输出的还是索引

    def load_data(
        *, data_dir, batch_size, image_size, class_cond=False, deterministic=False
    ):
        """
        For a dataset, create a generator over (images, kwargs) pairs.
    
        Each images is an NCHW float tensor, and the kwargs dict contains zero or
        more keys, each of which map to a batched Tensor of their own.
        The kwargs dict can be used for class labels, in which case the key is "y"
        and the values are integer tensors of class labels.
    
        :param data_dir: a dataset directory.
        :param batch_size: the batch size of each returned pair.
        :param image_size: the size to which images are resized.
        :param class_cond: if True, include a "y" key in returned dicts for class
                           label. If classes are not available and this is true, an
                           exception will be raised.
        :param deterministic: if True, yield results in a deterministic order.
        """
        if not data_dir:
            raise ValueError("unspecified data directory")
        all_files = _list_image_files_recursively(data_dir)
        classes = None
        if class_cond:
            # Assume classes are the first part of the filename,
            # before an underscore.
            class_names = [bf.basename(path).split("_")[0] for path in all_files]
            sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
            classes = [sorted_classes[x] for x in class_names]
        dataset = ImageDataset(
            image_size,
            all_files,
            classes=classes,
            shard=MPI.COMM_WORLD.Get_rank(),
            num_shards=MPI.COMM_WORLD.Get_size(),
        )
        if deterministic:
            loader = DataLoader(
                dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
            )
        else:
            loader = DataLoader(
                dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
            )
        while True:
            yield from loader
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46

    ImageDataset类自定义了dataset,getitem传入index获取每张图片,进行处理获取单张的训练样本,图像处理进行resize,转换RGB格式,归一化到-1到1之间的浮点型

    class ImageDataset(Dataset):
        def __init__(self, resolution, image_paths, classes=None, shard=0, num_shards=1):
            super().__init__()
            self.resolution = resolution
            self.local_images = image_paths[shard:][::num_shards]
            self.local_classes = None if classes is None else classes[shard:][::num_shards]
    
        def __len__(self):
            return len(self.local_images)
    
        def __getitem__(self, idx):
            path = self.local_images[idx]
            with bf.BlobFile(path, "rb") as f:
                pil_image = Image.open(f)
                pil_image.load()
    
            # We are not on a new enough PIL to support the `reducing_gap`
            # argument, which uses BOX downsampling at powers of two first.
            # Thus, we do it by hand to improve downsample quality.
            while min(*pil_image.size) >= 2 * self.resolution:
                pil_image = pil_image.resize(
                    tuple(x // 2 for x in pil_image.size), resample=Image.BOX
                )
    
            scale = self.resolution / min(*pil_image.size)
            pil_image = pil_image.resize(
                tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
            )
    
            arr = np.array(pil_image.convert("RGB"))
            crop_y = (arr.shape[0] - self.resolution) // 2
            crop_x = (arr.shape[1] - self.resolution) // 2
            arr = arr[crop_y : crop_y + self.resolution, crop_x : crop_x + self.resolution]
            arr = arr.astype(np.float32) / 127.5 - 1
    
            out_dict = {}
            if self.local_classes is not None:
                out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
            return np.transpose(arr, [2, 0, 1]), out_dict
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    main的最后代码的部分是实例化TrainLoop类,调用其run_loop函数,就可以开始训练了

    	logger.log("training...")
        TrainLoop(
            model=model,
            diffusion=diffusion,
            data=data,
            batch_size=args.batch_size,
            microbatch=args.microbatch,
            lr=args.lr,
            ema_rate=args.ema_rate,
            log_interval=args.log_interval,
            save_interval=args.save_interval,
            resume_checkpoint=args.resume_checkpoint,
            use_fp16=args.use_fp16,
            fp16_scale_growth=args.fp16_scale_growth,
            schedule_sampler=schedule_sampler,
            weight_decay=args.weight_decay,
            lr_anneal_steps=args.lr_anneal_steps,
        ).run_loop()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    总体来说:
    整个训练框架分为三步,第一步超参数汇总生成argparser,第二步create model and diffusion,第三步trainloop开始训练

    这是总体的训练框架,下面看看细节create model and diffusion部分,下面只介绍diffusion的实现,model部分自己随意替换成任意模型网络

    def create_model_and_diffusion()

    只是一个很顶层的封装函数,没有具体的实现

    def create_model_and_diffusion(
        image_size,
        class_cond,
        learn_sigma,
        sigma_small,
        num_channels,
        num_res_blocks,
        num_heads,
        num_heads_upsample,
        attention_resolutions,
        dropout,
        diffusion_steps,
        noise_schedule,
        timestep_respacing,
        use_kl,
        predict_xstart,
        rescale_timesteps,
        rescale_learned_sigmas,
        use_checkpoint,
        use_scale_shift_norm,
    ):
        model = create_model(
            image_size,
            num_channels,
            num_res_blocks,
            learn_sigma=learn_sigma,
            class_cond=class_cond,
            use_checkpoint=use_checkpoint,
            attention_resolutions=attention_resolutions,
            num_heads=num_heads,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            dropout=dropout,
        )
        diffusion = create_gaussian_diffusion(
            steps=diffusion_steps,
            learn_sigma=learn_sigma,
            sigma_small=sigma_small,
            noise_schedule=noise_schedule,
            use_kl=use_kl,
            predict_xstart=predict_xstart,
            rescale_timesteps=rescale_timesteps,
            rescale_learned_sigmas=rescale_learned_sigmas,
            timestep_respacing=timestep_respacing,
        )
        return model, diffusion
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    这篇博客主要讲diffusion实现部分,那么我们可以看到diffusion由create_gaussian_diffusion()函数创建

    	diffusion = create_gaussian_diffusion(
            steps=diffusion_steps,
            learn_sigma=learn_sigma,
            sigma_small=sigma_small,
            noise_schedule=noise_schedule,
            use_kl=use_kl,
            predict_xstart=predict_xstart,
            rescale_timesteps=rescale_timesteps,
            rescale_learned_sigmas=rescale_learned_sigmas,
            timestep_respacing=timestep_respacing,
        )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    def create_gaussian_diffusion()

    create_gaussian_diffusion生成一个扩散过程的框架,这是一个diffusion的顶层封装函数,

    def create_gaussian_diffusion(
        *,
        steps=1000,
        learn_sigma=False,
        sigma_small=False,
        noise_schedule="linear",
        use_kl=False,
        predict_xstart=False,
        rescale_timesteps=False,
        rescale_learned_sigmas=False,
        timestep_respacing="",
    ):
        betas = gd.get_named_beta_schedule(noise_schedule, steps)
        if use_kl:
            loss_type = gd.LossType.RESCALED_KL
        elif rescale_learned_sigmas:
            loss_type = gd.LossType.RESCALED_MSE
        else:
            loss_type = gd.LossType.MSE
        if not timestep_respacing:
            timestep_respacing = [steps]
        return SpacedDiffusion(
            use_timesteps=space_timesteps(steps, timestep_respacing),
            betas=betas,
            model_mean_type=(
                gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
            ),
            model_var_type=(
                (
                    gd.ModelVarType.FIXED_LARGE
                    if not sigma_small
                    else gd.ModelVarType.FIXED_SMALL
                )
                if not learn_sigma
                else gd.ModelVarType.LEARNED_RANGE
            ),
            loss_type=loss_type,
            rescale_timesteps=rescale_timesteps,
        )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    第一步确定加噪的方案,get_named_beta_schedule,生成一个加噪的方案
    获得了beta schedule

      betas = gd.get_named_beta_schedule(noise_schedule, steps)
    
    • 1

    然后确定loss type,取决于从命令行传来的超参数是什么,use_kl的话使用rescaled_kl,rescale_learned_sigmas超参数使用rescaled_mse,不设置超参数启动普通的mse

    	if use_kl:
            loss_type = gd.LossType.RESCALED_KL
        elif rescale_learned_sigmas:
            loss_type = gd.LossType.RESCALED_MSE
        else:
            loss_type = gd.LossType.MSE
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    create_gaussian_diffusion类最后return了一个实例化
    调用了SpacedDiffusion的实例化

    return SpacedDiffusion(  # 下略
    
    • 1

    SpacedDiffusion就是Diffusion的实现类嘛?还是一个顶层的封装函数,封装的是一种可以跳过基本扩散过程中的步骤的扩散过程

    SpacedDiffusion类

    SpacedDiffusion类就是创建扩散模型的框架

    timestep_respacing,对timestep做改进

    将参数都传入 SpaceDiffusion类中进行实例化,所以这个代码的深度很深

    下面看看SpacedDiffusion,这个类继承自GaussianDiffusion类

    类的注释:
    A diffusion process which can skip steps in a base diffusion process
    一种可以跳过基本扩散过程的步骤(skip steps)的扩散过程。

    扩散过程类,init函数定义了加噪方案的β,timestep哪些时刻要保留,numstep加噪次数

    p_mean_variance函数,p就是神经网络所预测的分布,故p_mean_variance就是神经网络预测的均值和方差,这里调用的是父类的方法super().

    training_loss函数,根据传入的超参数不同得到不同目标函数的公式,最简单的就是MSE loss,我们也可以加上kl loss联合起来作为目标函数

    _wrap_model函数,对timestep进行后处理,比如对timestep进行scale,对timestep进行一定的优化

    class SpacedDiffusion(GaussianDiffusion):
        """
        A diffusion process which can skip steps in a base diffusion process.
    
        :param use_timesteps: a collection (sequence or set) of timesteps from the
                              original diffusion process to retain.
        :param kwargs: the kwargs to create the base diffusion process.
        """
    
        def __init__(self, use_timesteps, **kwargs):
            self.use_timesteps = set(use_timesteps)
            self.timestep_map = []
            self.original_num_steps = len(kwargs["betas"])
    
            base_diffusion = GaussianDiffusion(**kwargs)  # pylint: disable=missing-kwoa
            last_alpha_cumprod = 1.0
            new_betas = []
            for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
                if i in self.use_timesteps:
                    new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
                    last_alpha_cumprod = alpha_cumprod
                    self.timestep_map.append(i)
            kwargs["betas"] = np.array(new_betas)
            super().__init__(**kwargs)
    
        def p_mean_variance(
            self, model, *args, **kwargs
        ):  # pylint: disable=signature-differs
            return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
    
        def training_losses(
            self, model, *args, **kwargs
        ):  # pylint: disable=signature-differs
            return super().training_losses(self._wrap_model(model), *args, **kwargs)
    
        def _wrap_model(self, model):
            if isinstance(model, _WrappedModel):
                return model
            return _WrappedModel(
                model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
            )
    
        def _scale_timesteps(self, t):
            # Scaling is done by the wrapped model.
            return t
     
     class _WrappedModel:
        def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
            self.model = model
            self.timestep_map = timestep_map
            self.rescale_timesteps = rescale_timesteps
            self.original_num_steps = original_num_steps
    
        def __call__(self, x, ts, **kwargs):
            map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
            new_ts = map_tensor[ts]
            if self.rescale_timesteps:
                new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
            return self.model(x, new_ts, **kwargs)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59

    GaussianDiffusion类 ⭐ LOOK HERE ⭐

    下面来看SpacedDiffusion的父类GaussianDiffusion类

    位置:improved_diffusion/gaussian_diffusion.py

    先看注释:Utilities for training and sampling diffusion models.
    训练和抽样扩散模型的实用程序,找了半天,原来这里才是真正的实现类

    init函数

    model_mean_type,知道这个模型要预测什么,预测的是方差还是噪声还是x0,
    model_var_type,方差是固定还是可学习的,还是预测学习线性加权的权重

    		self.model_mean_type = model_mean_type
    		self.model_var_type = model_var_type
    
    • 1
    • 2

    loss_type,是预测mse还是加kl

            self.loss_type = loss_type
    
    • 1

    rescale-timesteps,对时间进行scale,使得timestep永远缩放到在0到1000之间

            self.rescale_timesteps = rescale_timesteps
    
    • 1

    传入betas,论文中有提到一个扩散的超参数,1维的向量,在0到1之间

            betas = np.array(betas, dtype=np.float64)
       		self.betas = betas
            assert len(betas.shape) == 1, "betas must be 1-D"
            assert (betas > 0).all() and (betas <= 1).all()
    		self.num_timesteps = int(betas.shape[0])
    
    • 1
    • 2
    • 3
    • 4
    • 5

    后面得到一些变量α=1-β,α-bar(α连乘),α-bar-prev(αt-1-bar),α-bar-next(αt+1-bar),根号下的等等α,根号下1-αt-bar,sqrt-recip,倒数根号下alpha等等,用于论文中计算的公式

            alphas = 1.0 - betas
            self.alphas_cumprod = np.cumprod(alphas, axis=0)
            self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
            self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
            assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
    
            # calculations for diffusion q(x_t | x_{t-1}) and others
            self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
            self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
            self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
            self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
            self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    接下来计算扩散过程中后验分布的真实的方差和均值,方差是一个常数可以直接计算,均值和xt有关,但是均值的两个系数是可以先确定的

          # calculations for posterior q(x_{t-1} | x_t, x_0)
            self.posterior_variance = (
                betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
            )
            # log calculation clipped because the posterior variance is 0 at the
            # beginning of the diffusion chain.
            self.posterior_log_variance_clipped = np.log(
                np.append(self.posterior_variance[1], self.posterior_variance[1:])
            )
            self.posterior_mean_coef1 = (
                betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
            )
            self.posterior_mean_coef2 = (
                (1.0 - self.alphas_cumprod_prev)
                * np.sqrt(alphas)
                / (1.0 - self.alphas_cumprod)
            )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    在这里插入图片描述

    接着看看类中的其他一些函数,q_mean_variance,基于下面的公式8生成均值和方差,中间的是均值,后面是标准差
    在这里插入图片描述

        def q_mean_variance(self, x_start, t):
            """
            Get the distribution q(x_t | x_0).
    
            :param x_start: the [N x C x ...] tensor of noiseless inputs.
            :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
            :return: A tuple (mean, variance, log_variance), all of x_start's shape.
            """
            mean = (
                _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            )
            variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
            log_variance = _extract_into_tensor(
                self.log_one_minus_alphas_cumprod, t, x_start.shape
            )
            return mean, variance, log_variance
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    q_sample函数,对上面q-mean-variance进行采样,给定x0和t的情况下采样出xt,这个过程就是重参数的过程

        def q_sample(self, x_start, t, noise=None):
            """
            Diffuse the data for a given number of diffusion steps.
    
            In other words, sample from q(x_t | x_0).
    
            :param x_start: the initial data batch.
            :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
            :param noise: if specified, the split-out normal noise.
            :return: A noisy version of x_start.
            """
            if noise is None:
                noise = th.randn_like(x_start)
            assert noise.shape == x_start.shape
            return (
                _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
                + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
                * noise
            )
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    q-posterior-mean-variance,基于x0,xt和t计算出公式9和公式10真实分布的均值和方差
    在这里插入图片描述

     def q_posterior_mean_variance(self, x_start, x_t, t):
            """
            Compute the mean and variance of the diffusion posterior:
    
                q(x_{t-1} | x_t, x_0)
    
            """
            assert x_start.shape == x_t.shape
            posterior_mean = (
                _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
                + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
            )
            posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
            posterior_log_variance_clipped = _extract_into_tensor(
                self.posterior_log_variance_clipped, t, x_t.shape
            )
            assert (
                posterior_mean.shape[0]
                == posterior_variance.shape[0]
                == posterior_log_variance_clipped.shape[0]
                == x_start.shape[0]
            )
            return posterior_mean, posterior_variance, posterior_log_variance_clipped
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    p_mean_variance,p分布是神经网络的分布,去建模拟合的分布,得到前一时刻(逆扩散过程)的均值和方差,也包括x0的预测

     def p_mean_variance(
            self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
        ):
            """
            Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
            the initial x, x_0.
    
            :param model: the model, which takes a signal and a batch of timesteps
                          as input.
            :param x: the [N x C x ...] tensor at time t.
            :param t: a 1-D Tensor of timesteps.
            :param clip_denoised: if True, clip the denoised signal into [-1, 1].
            :param denoised_fn: if not None, a function which applies to the
                x_start prediction before it is used to sample. Applies before
                clip_denoised.
            :param model_kwargs: if not None, a dict of extra keyword arguments to
                pass to the model. This can be used for conditioning.
            :return: a dict with the following keys:
                     - 'mean': the model mean output.
                     - 'variance': the model variance output.
                     - 'log_variance': the log of 'variance'.
                     - 'pred_xstart': the prediction for x_0.
            """
            if model_kwargs is None:
                model_kwargs = {}
    
            B, C = x.shape[:2]
            assert t.shape == (B,)
            model_output = model(x, self._scale_timesteps(t), **model_kwargs)
    
            if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
                assert model_output.shape == (B, C * 2, *x.shape[2:])
                model_output, model_var_values = th.split(model_output, C, dim=1)
                if self.model_var_type == ModelVarType.LEARNED:
                    model_log_variance = model_var_values
                    model_variance = th.exp(model_log_variance)
                else:
                    min_log = _extract_into_tensor(
                        self.posterior_log_variance_clipped, t, x.shape
                    )
                    max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
                    # The model_var_values is [-1, 1] for [min_var, max_var].
                    frac = (model_var_values + 1) / 2
                    model_log_variance = frac * max_log + (1 - frac) * min_log
                    model_variance = th.exp(model_log_variance)
            else:
                model_variance, model_log_variance = {
                    # for fixedlarge, we set the initial (log-)variance like so
                    # to get a better decoder log likelihood.
                    ModelVarType.FIXED_LARGE: (
                        np.append(self.posterior_variance[1], self.betas[1:]),
                        np.log(np.append(self.posterior_variance[1], self.betas[1:])),
                    ),
                    ModelVarType.FIXED_SMALL: (
                        self.posterior_variance,
                        self.posterior_log_variance_clipped,
                    ),
                }[self.model_var_type]
                model_variance = _extract_into_tensor(model_variance, t, x.shape)
                model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
    
            def process_xstart(x):
                if denoised_fn is not None:
                    x = denoised_fn(x)
                if clip_denoised:
                    return x.clamp(-1, 1)
                return x
    
            if self.model_mean_type == ModelMeanType.PREVIOUS_X:
                pred_xstart = process_xstart(
                    self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
                )
                model_mean = model_output
            elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
                if self.model_mean_type == ModelMeanType.START_X:
                    pred_xstart = process_xstart(model_output)
                else:
                    pred_xstart = process_xstart(
                        self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
                    )
                model_mean, _, _ = self.q_posterior_mean_variance(
                    x_start=pred_xstart, x_t=x, t=t
                )
            else:
                raise NotImplementedError(self.model_mean_type)
    
            assert (
                model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
            )
            return {
                "mean": model_mean,
                "variance": model_variance,
                "log_variance": model_log_variance,
                "pred_xstart": pred_xstart,
            }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96

    _predict_xstart_from_eps,辅助函数,从预测处的噪声预测x0,对应公式12 在这里插入图片描述
    给定xt,t和x0到xt所加的噪声反推出x0

        def _predict_xstart_from_eps(self, x_t, t, eps):
            assert x_t.shape == eps.shape
            return (
                _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
                - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
            )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    _predict_xstart_from_xprev,从xt-1中预测出x0
    在这里插入图片描述
    基于公式10,xt-1就是μ~t,有xt,反推出x0

        def _predict_xstart_from_xprev(self, x_t, t, xprev):
            assert x_t.shape == xprev.shape
            return (  # (xprev - coef2*x_t) / coef1
                _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
                - _extract_into_tensor(
                    self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
                )
                * x_t
            )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    _predict_eps_from_xstart,从x0和xt,推导eps,对公式8的反推

    在这里插入图片描述

     def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
            return (
                _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
                - pred_xstart
            ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
    
    • 1
    • 2
    • 3
    • 4
    • 5

    p_sample,从xt采样出xt-1,所有的p分布都是模型预测的,其实就是推理的函数

        def p_sample(
            self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
        ):
            """
            Sample x_{t-1} from the model at the given timestep.
    
            :param model: the model to sample from.
            :param x: the current tensor at x_{t-1}.
            :param t: the value of t, starting at 0 for the first diffusion step.
            :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
            :param denoised_fn: if not None, a function which applies to the
                x_start prediction before it is used to sample.
            :param model_kwargs: if not None, a dict of extra keyword arguments to
                pass to the model. This can be used for conditioning.
            :return: a dict containing the following keys:
                     - 'sample': a random sample from the model.
                     - 'pred_xstart': a prediction of x_0.
            """
            out = self.p_mean_variance(
                model,
                x,
                t,
                clip_denoised=clip_denoised,
                denoised_fn=denoised_fn,
                model_kwargs=model_kwargs,
            )
            noise = th.randn_like(x)
            nonzero_mask = (
                (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
            )  # no noise when t == 0
            sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
            return {"sample": sample, "pred_xstart": out["pred_xstart"]}
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    _vb_terms_bpd, 计算最终的kl散度
    kl散度包括两项,当t在0到t之间,用模型预测分布计算高斯分布算一个kl散度,另一项是最后一个时刻,L0 loss,使用的是似然函数,负对数似然函数,使用的是累积分布函数的差分拟合离散的高斯分布

       def _vb_terms_bpd(
            self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
        ):
            """
            Get a term for the variational lower-bound.
    
            The resulting units are bits (rather than nats, as one might expect).
            This allows for comparison to other papers.
    
            :return: a dict with the following keys:
                     - 'output': a shape [N] tensor of NLLs or KLs.
                     - 'pred_xstart': the x_0 predictions.
            """
            true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
                x_start=x_start, x_t=x_t, t=t
            )
            out = self.p_mean_variance(
                model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
            )
            kl = normal_kl(
                true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
            )
            kl = mean_flat(kl) / np.log(2.0)
    
            decoder_nll = -discretized_gaussian_log_likelihood(
                x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
            )
            assert decoder_nll.shape == x_start.shape
            decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
    
            # At the first timestep return the decoder NLL,
            # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
            output = th.where((t == 0), decoder_nll, kl)
            return {"output": output, "pred_xstart": out["pred_xstart"]}
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34

    traning-loss,计算一个使用的loss

       def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
            """
            Compute training losses for a single timestep.
    
            :param model: the model to evaluate loss on.
            :param x_start: the [N x C x ...] tensor of inputs.
            :param t: a batch of timestep indices.
            :param model_kwargs: if not None, a dict of extra keyword arguments to
                pass to the model. This can be used for conditioning.
            :param noise: if specified, the specific Gaussian noise to try to remove.
            :return: a dict with the key "loss" containing a tensor of shape [N].
                     Some mean or variance settings may also have other keys.
            """
            if model_kwargs is None:
                model_kwargs = {}
            if noise is None:
                noise = th.randn_like(x_start)
            x_t = self.q_sample(x_start, t, noise=noise)
    
            terms = {}
    
            if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
                terms["loss"] = self._vb_terms_bpd(
                    model=model,
                    x_start=x_start,
                    x_t=x_t,
                    t=t,
                    clip_denoised=False,
                    model_kwargs=model_kwargs,
                )["output"]
                if self.loss_type == LossType.RESCALED_KL:
                    terms["loss"] *= self.num_timesteps
            elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
                model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
    
                if self.model_var_type in [
                    ModelVarType.LEARNED,
                    ModelVarType.LEARNED_RANGE,
                ]:
                    B, C = x_t.shape[:2]
                    assert model_output.shape == (B, C * 2, *x_t.shape[2:])
                    model_output, model_var_values = th.split(model_output, C, dim=1)
                    # Learn the variance using the variational bound, but don't let
                    # it affect our mean prediction.
                    frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
                    terms["vb"] = self._vb_terms_bpd(
                        model=lambda *args, r=frozen_out: r,
                        x_start=x_start,
                        x_t=x_t,
                        t=t,
                        clip_denoised=False,
                    )["output"]
                    if self.loss_type == LossType.RESCALED_MSE:
                        # Divide by 1000 for equivalence with initial implementation.
                        # Without a factor of 1/1000, the VB term hurts the MSE term.
                        terms["vb"] *= self.num_timesteps / 1000.0
    
                target = {
                    ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
                        x_start=x_start, x_t=x_t, t=t
                    )[0],
                    ModelMeanType.START_X: x_start,
                    ModelMeanType.EPSILON: noise,
                }[self.model_mean_type]
                assert model_output.shape == target.shape == x_start.shape
                terms["mse"] = mean_flat((target - model_output) ** 2)
                if "vb" in terms:
                    terms["loss"] = terms["mse"] + terms["vb"]
                else:
                    terms["loss"] = terms["mse"]
            else:
                raise NotImplementedError(self.loss_type)
    
            return terms
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74

    _extract_into_tensor,辅助函数,从tensor中取出第t时刻

    def _extract_into_tensor(arr, timesteps, broadcast_shape):
        """
        Extract values from a 1-D numpy array for a batch of indices.
    
        :param arr: the 1-D numpy array.
        :param timesteps: a tensor of indices into the array to extract.
        :param broadcast_shape: a larger shape of K dimensions with the batch
                                dimension equal to the length of timesteps.
        :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
        """
        res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
        while len(res.shape) < len(broadcast_shape):
            res = res[..., None]
        return res.expand(broadcast_shape)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    边角料

    一个很小很小的改动,算是技巧的noise scheduling

    noise scheduling

    原始的DDPM中使用的是线性的增长的β加噪方案,此处使用了余弦的方案,同时控制上界在0.999

    def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
        """
        Get a pre-defined beta schedule for the given name.
    
        The beta schedule library consists of beta schedules which remain similar
        in the limit of num_diffusion_timesteps.
        Beta schedules may be added, but should not be removed or changed once
        they are committed to maintain backwards compatibility.
        """
        if schedule_name == "linear":
            # Linear schedule from Ho et al, extended to work for any number of
            # diffusion steps.
            scale = 1000 / num_diffusion_timesteps
            beta_start = scale * 0.0001
            beta_end = scale * 0.02
            return np.linspace(
                beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
            )
        elif schedule_name == "cosine":
            return betas_for_alpha_bar(
                num_diffusion_timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • 相关阅读:
    7.1提出问题&7.2欧拉方法
    网页颜色搭配表及颜色搭配技巧
    玉米社:如何做好企业SEM竞价推广?数据分析不能少
    jupyter notebook 中文本编辑快捷键
    HTTP协议分析
    PROB: Probabilistic Objectness for Open World Object Detection(论文解析)
    【群晖NAS】Synology drive套件安装设置与结合内网穿透实现远程访问——“cpolar内网穿透”
    SpringBoot的测试方案
    库存管理方法有哪些?
    python使用pandas中的read_csv函数读取csv数据为dataframe、筛选dataframe中的一个数据列的前几行数据
  • 原文地址:https://blog.csdn.net/qq_19841133/article/details/126948474