• NumPy数值计算基础实训


    实训目的

    1.熟练掌握NumPy多维数组;
    2.熟练掌握NumPy索引和切片;
    3.熟练掌握NumPy数组读写及数据统计分析

    实训要求

    读取iris数据集中鸢尾花的萼片、花瓣长度数据(已保存为CSV格式),并对其进行排序、去重,并求出和、累积和、均值、标准差、方差、最小值、最大值

    1:导入模块

    import numpy as np
    import csv
    
    • 1
    • 2

    2:获取数据

    实验数据

    import numpy as np
    import csv
    
    iris_data = []
    with open("iris.csv") as csvfile:
        csv_reader = csv.reader(csvfile)
        birth_header = next(csv_reader)
        for row in csv_reader:
            iris_data.append(row)   
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    输出数据获取的数据看一下是否正确,为了方便查看每两组数据为一行

    i = 0
    for x in iris_data:
        i+=1
        print(x, end='')
        if i % 2 == 0:
            print()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    ['1', '5.1', '3.5', '1.4', '0.2', 'setosa']['2', '4.9', '3', '1.4', '0.2', 'setosa']
    ['3', '4.7', '3.2', '1.3', '0.2', 'setosa']['4', '4.6', '3.1', '1.5', '0.2', 'setosa']
    ['5', '5', '3.6', '1.4', '0.2', 'setosa']['6', '5.4', '3.9', '1.7', '0.4', 'setosa']
    ['7', '4.6', '3.4', '1.4', '0.3', 'setosa']['8', '5', '3.4', '1.5', '0.2', 'setosa']
    ['9', '4.4', '2.9', '1.4', '0.2', 'setosa']['10', '4.9', '3.1', '1.5', '0.1', 'setosa']
    ['11', '5.4', '3.7', '1.5', '0.2', 'setosa']['12', '4.8', '3.4', '1.6', '0.2', 'setosa']
    ['13', '4.8', '3', '1.4', '0.1', 'setosa']['14', '4.3', '3', '1.1', '0.1', 'setosa']
    ['15', '5.8', '4', '1.2', '0.2', 'setosa']['16', '5.7', '4.4', '1.5', '0.4', 'setosa']
    ['17', '5.4', '3.9', '1.3', '0.4', 'setosa']['18', '5.1', '3.5', '1.4', '0.3', 'setosa']
    ['19', '5.7', '3.8', '1.7', '0.3', 'setosa']['20', '5.1', '3.8', '1.5', '0.3', 'setosa']
    ['21', '5.4', '3.4', '1.7', '0.2', 'setosa']['22', '5.1', '3.7', '1.5', '0.4', 'setosa']
    ['23', '4.6', '3.6', '1', '0.2', 'setosa']['24', '5.1', '3.3', '1.7', '0.5', 'setosa']
    ['25', '4.8', '3.4', '1.9', '0.2', 'setosa']['26', '5', '3', '1.6', '0.2', 'setosa']
    ['27', '5', '3.4', '1.6', '0.4', 'setosa']['28', '5.2', '3.5', '1.5', '0.2', 'setosa']
    ['29', '5.2', '3.4', '1.4', '0.2', 'setosa']['30', '4.7', '3.2', '1.6', '0.2', 'setosa']
    ['31', '4.8', '3.1', '1.6', '0.2', 'setosa']['32', '5.4', '3.4', '1.5', '0.4', 'setosa']
    ['33', '5.2', '4.1', '1.5', '0.1', 'setosa']['34', '5.5', '4.2', '1.4', '0.2', 'setosa']
    ['35', '4.9', '3.1', '1.5', '0.2', 'setosa']['36', '5', '3.2', '1.2', '0.2', 'setosa']
    ['37', '5.5', '3.5', '1.3', '0.2', 'setosa']['38', '4.9', '3.6', '1.4', '0.1', 'setosa']
    ['39', '4.4', '3', '1.3', '0.2', 'setosa']['40', '5.1', '3.4', '1.5', '0.2', 'setosa']
    ['41', '5', '3.5', '1.3', '0.3', 'setosa']['42', '4.5', '2.3', '1.3', '0.3', 'setosa']
    ['43', '4.4', '3.2', '1.3', '0.2', 'setosa']['44', '5', '3.5', '1.6', '0.6', 'setosa']
    ['45', '5.1', '3.8', '1.9', '0.4', 'setosa']['46', '4.8', '3', '1.4', '0.3', 'setosa']
    ['47', '5.1', '3.8', '1.6', '0.2', 'setosa']['48', '4.6', '3.2', '1.4', '0.2', 'setosa']
    ['49', '5.3', '3.7', '1.5', '0.2', 'setosa']['50', '5', '3.3', '1.4', '0.2', 'setosa']
    ['51', '7', '3.2', '4.7', '1.4', 'versicolor']['52', '6.4', '3.2', '4.5', '1.5', 'versicolor']
    ['53', '6.9', '3.1', '4.9', '1.5', 'versicolor']['54', '5.5', '2.3', '4', '1.3', 'versicolor']
    ['55', '6.5', '2.8', '4.6', '1.5', 'versicolor']['56', '5.7', '2.8', '4.5', '1.3', 'versicolor']
    ['57', '6.3', '3.3', '4.7', '1.6', 'versicolor']['58', '4.9', '2.4', '3.3', '1', 'versicolor']
    ['59', '6.6', '2.9', '4.6', '1.3', 'versicolor']['60', '5.2', '2.7', '3.9', '1.4', 'versicolor']
    ['61', '5', '2', '3.5', '1', 'versicolor']['62', '5.9', '3', '4.2', '1.5', 'versicolor']
    ['63', '6', '2.2', '4', '1', 'versicolor']['64', '6.1', '2.9', '4.7', '1.4', 'versicolor']
    ['65', '5.6', '2.9', '3.6', '1.3', 'versicolor']['66', '6.7', '3.1', '4.4', '1.4', 'versicolor']
    ['67', '5.6', '3', '4.5', '1.5', 'versicolor']['68', '5.8', '2.7', '4.1', '1', 'versicolor']
    ['69', '6.2', '2.2', '4.5', '1.5', 'versicolor']['70', '5.6', '2.5', '3.9', '1.1', 'versicolor']
    ['71', '5.9', '3.2', '4.8', '1.8', 'versicolor']['72', '6.1', '2.8', '4', '1.3', 'versicolor']
    ['73', '6.3', '2.5', '4.9', '1.5', 'versicolor']['74', '6.1', '2.8', '4.7', '1.2', 'versicolor']
    ['75', '6.4', '2.9', '4.3', '1.3', 'versicolor']['76', '6.6', '3', '4.4', '1.4', 'versicolor']
    ['77', '6.8', '2.8', '4.8', '1.4', 'versicolor']['78', '6.7', '3', '5', '1.7', 'versicolor']
    ['79', '6', '2.9', '4.5', '1.5', 'versicolor']['80', '5.7', '2.6', '3.5', '1', 'versicolor']
    ['81', '5.5', '2.4', '3.8', '1.1', 'versicolor']['82', '5.5', '2.4', '3.7', '1', 'versicolor']
    ['83', '5.8', '2.7', '3.9', '1.2', 'versicolor']['84', '6', '2.7', '5.1', '1.6', 'versicolor']
    ['85', '5.4', '3', '4.5', '1.5', 'versicolor']['86', '6', '3.4', '4.5', '1.6', 'versicolor']
    ['87', '6.7', '3.1', '4.7', '1.5', 'versicolor']['88', '6.3', '2.3', '4.4', '1.3', 'versicolor']
    ['89', '5.6', '3', '4.1', '1.3', 'versicolor']['90', '5.5', '2.5', '4', '1.3', 'versicolor']
    ['91', '5.5', '2.6', '4.4', '1.2', 'versicolor']['92', '6.1', '3', '4.6', '1.4', 'versicolor']
    ['93', '5.8', '2.6', '4', '1.2', 'versicolor']['94', '5', '2.3', '3.3', '1', 'versicolor']
    ['95', '5.6', '2.7', '4.2', '1.3', 'versicolor']['96', '5.7', '3', '4.2', '1.2', 'versicolor']
    ['97', '5.7', '2.9', '4.2', '1.3', 'versicolor']['98', '6.2', '2.9', '4.3', '1.3', 'versicolor']
    ['99', '5.1', '2.5', '3', '1.1', 'versicolor']['100', '5.7', '2.8', '4.1', '1.3', 'versicolor']
    ['101', '6.3', '3.3', '6', '2.5', 'virginica']['102', '5.8', '2.7', '5.1', '1.9', 'virginica']
    ['103', '7.1', '3', '5.9', '2.1', 'virginica']['104', '6.3', '2.9', '5.6', '1.8', 'virginica']
    ['105', '6.5', '3', '5.8', '2.2', 'virginica']['106', '7.6', '3', '6.6', '2.1', 'virginica']
    ['107', '4.9', '2.5', '4.5', '1.7', 'virginica']['108', '7.3', '2.9', '6.3', '1.8', 'virginica']
    ['109', '6.7', '2.5', '5.8', '1.8', 'virginica']['110', '7.2', '3.6', '6.1', '2.5', 'virginica']
    ['111', '6.5', '3.2', '5.1', '2', 'virginica']['112', '6.4', '2.7', '5.3', '1.9', 'virginica']
    ['113', '6.8', '3', '5.5', '2.1', 'virginica']['114', '5.7', '2.5', '5', '2', 'virginica']
    ['115', '5.8', '2.8', '5.1', '2.4', 'virginica']['116', '6.4', '3.2', '5.3', '2.3', 'virginica']
    ['117', '6.5', '3', '5.5', '1.8', 'virginica']['118', '7.7', '3.8', '6.7', '2.2', 'virginica']
    ['119', '7.7', '2.6', '6.9', '2.3', 'virginica']['120', '6', '2.2', '5', '1.5', 'virginica']
    ['121', '6.9', '3.2', '5.7', '2.3', 'virginica']['122', '5.6', '2.8', '4.9', '2', 'virginica']
    ['123', '7.7', '2.8', '6.7', '2', 'virginica']['124', '6.3', '2.7', '4.9', '1.8', 'virginica']
    ['125', '6.7', '3.3', '5.7', '2.1', 'virginica']['126', '7.2', '3.2', '6', '1.8', 'virginica']
    ['127', '6.2', '2.8', '4.8', '1.8', 'virginica']['128', '6.1', '3', '4.9', '1.8', 'virginica']
    ['129', '6.4', '2.8', '5.6', '2.1', 'virginica']['130', '7.2', '3', '5.8', '1.6', 'virginica']
    ['131', '7.4', '2.8', '6.1', '1.9', 'virginica']['132', '7.9', '3.8', '6.4', '2', 'virginica']
    ['133', '6.4', '2.8', '5.6', '2.2', 'virginica']['134', '6.3', '2.8', '5.1', '1.5', 'virginica']
    ['135', '6.1', '2.6', '5.6', '1.4', 'virginica']['136', '7.7', '3', '6.1', '2.3', 'virginica']
    ['137', '6.3', '3.4', '5.6', '2.4', 'virginica']['138', '6.4', '3.1', '5.5', '1.8', 'virginica']
    ['139', '6', '3', '4.8', '1.8', 'virginica']['140', '6.9', '3.1', '5.4', '2.1', 'virginica']
    ['141', '6.7', '3.1', '5.6', '2.4', 'virginica']['142', '6.9', '3.1', '5.1', '2.3', 'virginica']
    ['143', '5.8', '2.7', '5.1', '1.9', 'virginica']['144', '6.8', '3.2', '5.9', '2.3', 'virginica']
    ['145', '6.7', '3.3', '5.7', '2.5', 'virginica']['146', '6.7', '3', '5.2', '2.3', 'virginica']
    ['147', '6.3', '2.5', '5', '1.9', 'virginica']['148', '6.5', '3', '5.2', '2', 'virginica']
    ['149', '6.2', '3.4', '5.4', '2.3', 'virginica']['150', '5.9', '3', '5.1', '1.8', 'virginica']
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75

    3:数据清理:去掉索引号

    iris_list = []
    for row in iris_data:
        iris_list.append(tuple(row[1:]))
    
    • 1
    • 2
    • 3

    每行三组数据输出是否正确

    i = 0
    for x in iris_list:
        i+=1
        print(x, end=' ')
        if i % 3 == 0:
            print()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    ('5.1', '3.5', '1.4', '0.2', 'setosa') ('4.9', '3', '1.4', '0.2', 'setosa') ('4.7', '3.2', '1.3', '0.2', 'setosa') 
    ('4.6', '3.1', '1.5', '0.2', 'setosa') ('5', '3.6', '1.4', '0.2', 'setosa') ('5.4', '3.9', '1.7', '0.4', 'setosa') 
    ('4.6', '3.4', '1.4', '0.3', 'setosa') ('5', '3.4', '1.5', '0.2', 'setosa') ('4.4', '2.9', '1.4', '0.2', 'setosa') 
    ('4.9', '3.1', '1.5', '0.1', 'setosa') ('5.4', '3.7', '1.5', '0.2', 'setosa') ('4.8', '3.4', '1.6', '0.2', 'setosa') 
    ('4.8', '3', '1.4', '0.1', 'setosa') ('4.3', '3', '1.1', '0.1', 'setosa') ('5.8', '4', '1.2', '0.2', 'setosa') 
    ('5.7', '4.4', '1.5', '0.4', 'setosa') ('5.4', '3.9', '1.3', '0.4', 'setosa') ('5.1', '3.5', '1.4', '0.3', 'setosa') 
    ('5.7', '3.8', '1.7', '0.3', 'setosa') ('5.1', '3.8', '1.5', '0.3', 'setosa') ('5.4', '3.4', '1.7', '0.2', 'setosa') 
    ('5.1', '3.7', '1.5', '0.4', 'setosa') ('4.6', '3.6', '1', '0.2', 'setosa') ('5.1', '3.3', '1.7', '0.5', 'setosa') 
    ('4.8', '3.4', '1.9', '0.2', 'setosa') ('5', '3', '1.6', '0.2', 'setosa') ('5', '3.4', '1.6', '0.4', 'setosa') 
    ('5.2', '3.5', '1.5', '0.2', 'setosa') ('5.2', '3.4', '1.4', '0.2', 'setosa') ('4.7', '3.2', '1.6', '0.2', 'setosa') 
    ('4.8', '3.1', '1.6', '0.2', 'setosa') ('5.4', '3.4', '1.5', '0.4', 'setosa') ('5.2', '4.1', '1.5', '0.1', 'setosa') 
    ('5.5', '4.2', '1.4', '0.2', 'setosa') ('4.9', '3.1', '1.5', '0.2', 'setosa') ('5', '3.2', '1.2', '0.2', 'setosa') 
    ('5.5', '3.5', '1.3', '0.2', 'setosa') ('4.9', '3.6', '1.4', '0.1', 'setosa') ('4.4', '3', '1.3', '0.2', 'setosa') 
    ('5.1', '3.4', '1.5', '0.2', 'setosa') ('5', '3.5', '1.3', '0.3', 'setosa') ('4.5', '2.3', '1.3', '0.3', 'setosa') 
    ('4.4', '3.2', '1.3', '0.2', 'setosa') ('5', '3.5', '1.6', '0.6', 'setosa') ('5.1', '3.8', '1.9', '0.4', 'setosa') 
    ('4.8', '3', '1.4', '0.3', 'setosa') ('5.1', '3.8', '1.6', '0.2', 'setosa') ('4.6', '3.2', '1.4', '0.2', 'setosa') 
    ('5.3', '3.7', '1.5', '0.2', 'setosa') ('5', '3.3', '1.4', '0.2', 'setosa') ('7', '3.2', '4.7', '1.4', 'versicolor') 
    ('6.4', '3.2', '4.5', '1.5', 'versicolor') ('6.9', '3.1', '4.9', '1.5', 'versicolor') ('5.5', '2.3', '4', '1.3', 'versicolor') 
    ('6.5', '2.8', '4.6', '1.5', 'versicolor') ('5.7', '2.8', '4.5', '1.3', 'versicolor') ('6.3', '3.3', '4.7', '1.6', 'versicolor') 
    ('4.9', '2.4', '3.3', '1', 'versicolor') ('6.6', '2.9', '4.6', '1.3', 'versicolor') ('5.2', '2.7', '3.9', '1.4', 'versicolor') 
    ('5', '2', '3.5', '1', 'versicolor') ('5.9', '3', '4.2', '1.5', 'versicolor') ('6', '2.2', '4', '1', 'versicolor') 
    ('6.1', '2.9', '4.7', '1.4', 'versicolor') ('5.6', '2.9', '3.6', '1.3', 'versicolor') ('6.7', '3.1', '4.4', '1.4', 'versicolor') 
    ('5.6', '3', '4.5', '1.5', 'versicolor') ('5.8', '2.7', '4.1', '1', 'versicolor') ('6.2', '2.2', '4.5', '1.5', 'versicolor') 
    ('5.6', '2.5', '3.9', '1.1', 'versicolor') ('5.9', '3.2', '4.8', '1.8', 'versicolor') ('6.1', '2.8', '4', '1.3', 'versicolor') 
    ('6.3', '2.5', '4.9', '1.5', 'versicolor') ('6.1', '2.8', '4.7', '1.2', 'versicolor') ('6.4', '2.9', '4.3', '1.3', 'versicolor') 
    ('6.6', '3', '4.4', '1.4', 'versicolor') ('6.8', '2.8', '4.8', '1.4', 'versicolor') ('6.7', '3', '5', '1.7', 'versicolor') 
    ('6', '2.9', '4.5', '1.5', 'versicolor') ('5.7', '2.6', '3.5', '1', 'versicolor') ('5.5', '2.4', '3.8', '1.1', 'versicolor') 
    ('5.5', '2.4', '3.7', '1', 'versicolor') ('5.8', '2.7', '3.9', '1.2', 'versicolor') ('6', '2.7', '5.1', '1.6', 'versicolor') 
    ('5.4', '3', '4.5', '1.5', 'versicolor') ('6', '3.4', '4.5', '1.6', 'versicolor') ('6.7', '3.1', '4.7', '1.5', 'versicolor') 
    ('6.3', '2.3', '4.4', '1.3', 'versicolor') ('5.6', '3', '4.1', '1.3', 'versicolor') ('5.5', '2.5', '4', '1.3', 'versicolor') 
    ('5.5', '2.6', '4.4', '1.2', 'versicolor') ('6.1', '3', '4.6', '1.4', 'versicolor') ('5.8', '2.6', '4', '1.2', 'versicolor') 
    ('5', '2.3', '3.3', '1', 'versicolor') ('5.6', '2.7', '4.2', '1.3', 'versicolor') ('5.7', '3', '4.2', '1.2', 'versicolor') 
    ('5.7', '2.9', '4.2', '1.3', 'versicolor') ('6.2', '2.9', '4.3', '1.3', 'versicolor') ('5.1', '2.5', '3', '1.1', 'versicolor') 
    ('5.7', '2.8', '4.1', '1.3', 'versicolor') ('6.3', '3.3', '6', '2.5', 'virginica') ('5.8', '2.7', '5.1', '1.9', 'virginica') 
    ('7.1', '3', '5.9', '2.1', 'virginica') ('6.3', '2.9', '5.6', '1.8', 'virginica') ('6.5', '3', '5.8', '2.2', 'virginica') 
    ('7.6', '3', '6.6', '2.1', 'virginica') ('4.9', '2.5', '4.5', '1.7', 'virginica') ('7.3', '2.9', '6.3', '1.8', 'virginica') 
    ('6.7', '2.5', '5.8', '1.8', 'virginica') ('7.2', '3.6', '6.1', '2.5', 'virginica') ('6.5', '3.2', '5.1', '2', 'virginica') 
    ('6.4', '2.7', '5.3', '1.9', 'virginica') ('6.8', '3', '5.5', '2.1', 'virginica') ('5.7', '2.5', '5', '2', 'virginica') 
    ('5.8', '2.8', '5.1', '2.4', 'virginica') ('6.4', '3.2', '5.3', '2.3', 'virginica') ('6.5', '3', '5.5', '1.8', 'virginica') 
    ('7.7', '3.8', '6.7', '2.2', 'virginica') ('7.7', '2.6', '6.9', '2.3', 'virginica') ('6', '2.2', '5', '1.5', 'virginica') 
    ('6.9', '3.2', '5.7', '2.3', 'virginica') ('5.6', '2.8', '4.9', '2', 'virginica') ('7.7', '2.8', '6.7', '2', 'virginica') 
    ('6.3', '2.7', '4.9', '1.8', 'virginica') ('6.7', '3.3', '5.7', '2.1', 'virginica') ('7.2', '3.2', '6', '1.8', 'virginica') 
    ('6.2', '2.8', '4.8', '1.8', 'virginica') ('6.1', '3', '4.9', '1.8', 'virginica') ('6.4', '2.8', '5.6', '2.1', 'virginica') 
    ('7.2', '3', '5.8', '1.6', 'virginica') ('7.4', '2.8', '6.1', '1.9', 'virginica') ('7.9', '3.8', '6.4', '2', 'virginica') 
    ('6.4', '2.8', '5.6', '2.2', 'virginica') ('6.3', '2.8', '5.1', '1.5', 'virginica') ('6.1', '2.6', '5.6', '1.4', 'virginica') 
    ('7.7', '3', '6.1', '2.3', 'virginica') ('6.3', '3.4', '5.6', '2.4', 'virginica') ('6.4', '3.1', '5.5', '1.8', 'virginica') 
    ('6', '3', '4.8', '1.8', 'virginica') ('6.9', '3.1', '5.4', '2.1', 'virginica') ('6.7', '3.1', '5.6', '2.4', 'virginica') 
    ('6.9', '3.1', '5.1', '2.3', 'virginica') ('5.8', '2.7', '5.1', '1.9', 'virginica') ('6.8', '3.2', '5.9', '2.3', 'virginica') 
    ('6.7', '3.3', '5.7', '2.5', 'virginica') ('6.7', '3', '5.2', '2.3', 'virginica') ('6.3', '2.5', '5', '1.9', 'virginica') 
    ('6.5', '3', '5.2', '2', 'virginica') ('6.2', '3.4', '5.4', '2.3', 'virginica') ('5.9', '3', '5.1', '1.8', 'virginica') 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50

    4:数据统计

    1:创建数据类型

    datatype = np.dtype([("Sepal.Length", np.str_, 40),
                         ("Sepal.Width", np.str_, 40),
                         ("Petal.Length", np.str_, 40),
                         ("Petal.Width", np.str_, 40),
                         ("Species", np.str_, 40)])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    print(datatype)
    
    • 1
    [('Sepal.Length', '), ('Sepal.Width', '), ('Petal.Length', '), ('Petal.Width', '), ('Species', ')]
    
    • 1

    2:创建二维数组

    iris_data = np.array(iris_list, dtype = datatype)
    
    • 1
    print(iris_data)
    
    • 1
    [('5.1', '3.5', '1.4', '0.2', 'setosa')
     ('4.9', '3', '1.4', '0.2', 'setosa')
     ('4.7', '3.2', '1.3', '0.2', 'setosa')
     ('4.6', '3.1', '1.5', '0.2', 'setosa')
     ('5', '3.6', '1.4', '0.2', 'setosa')
     ('5.4', '3.9', '1.7', '0.4', 'setosa')
     ('4.6', '3.4', '1.4', '0.3', 'setosa')
     ('5', '3.4', '1.5', '0.2', 'setosa')
     ('4.4', '2.9', '1.4', '0.2', 'setosa')
     ('4.9', '3.1', '1.5', '0.1', 'setosa')
     ('5.4', '3.7', '1.5', '0.2', 'setosa')
     ('4.8', '3.4', '1.6', '0.2', 'setosa')
     ('4.8', '3', '1.4', '0.1', 'setosa') ('4.3', '3', '1.1', '0.1', 'setosa')
     ('5.8', '4', '1.2', '0.2', 'setosa')
     ('5.7', '4.4', '1.5', '0.4', 'setosa')
     ('5.4', '3.9', '1.3', '0.4', 'setosa')
     ('5.1', '3.5', '1.4', '0.3', 'setosa')
     ('5.7', '3.8', '1.7', '0.3', 'setosa')
     ('5.1', '3.8', '1.5', '0.3', 'setosa')
     ('5.4', '3.4', '1.7', '0.2', 'setosa')
     ('5.1', '3.7', '1.5', '0.4', 'setosa')
     ('4.6', '3.6', '1', '0.2', 'setosa')
     ('5.1', '3.3', '1.7', '0.5', 'setosa')
     ('4.8', '3.4', '1.9', '0.2', 'setosa') ('5', '3', '1.6', '0.2', 'setosa')
     ('5', '3.4', '1.6', '0.4', 'setosa')
     ('5.2', '3.5', '1.5', '0.2', 'setosa')
     ('5.2', '3.4', '1.4', '0.2', 'setosa')
     ('4.7', '3.2', '1.6', '0.2', 'setosa')
     ('4.8', '3.1', '1.6', '0.2', 'setosa')
     ('5.4', '3.4', '1.5', '0.4', 'setosa')
     ('5.2', '4.1', '1.5', '0.1', 'setosa')
     ('5.5', '4.2', '1.4', '0.2', 'setosa')
     ('4.9', '3.1', '1.5', '0.2', 'setosa')
     ('5', '3.2', '1.2', '0.2', 'setosa')
     ('5.5', '3.5', '1.3', '0.2', 'setosa')
     ('4.9', '3.6', '1.4', '0.1', 'setosa')
     ('4.4', '3', '1.3', '0.2', 'setosa')
     ('5.1', '3.4', '1.5', '0.2', 'setosa')
     ('5', '3.5', '1.3', '0.3', 'setosa')
     ('4.5', '2.3', '1.3', '0.3', 'setosa')
     ('4.4', '3.2', '1.3', '0.2', 'setosa')
     ('5', '3.5', '1.6', '0.6', 'setosa')
     ('5.1', '3.8', '1.9', '0.4', 'setosa')
     ('4.8', '3', '1.4', '0.3', 'setosa')
     ('5.1', '3.8', '1.6', '0.2', 'setosa')
     ('4.6', '3.2', '1.4', '0.2', 'setosa')
     ('5.3', '3.7', '1.5', '0.2', 'setosa')
     ('5', '3.3', '1.4', '0.2', 'setosa')
     ('7', '3.2', '4.7', '1.4', 'versicolor')
     ('6.4', '3.2', '4.5', '1.5', 'versicolor')
     ('6.9', '3.1', '4.9', '1.5', 'versicolor')
     ('5.5', '2.3', '4', '1.3', 'versicolor')
     ('6.5', '2.8', '4.6', '1.5', 'versicolor')
     ('5.7', '2.8', '4.5', '1.3', 'versicolor')
     ('6.3', '3.3', '4.7', '1.6', 'versicolor')
     ('4.9', '2.4', '3.3', '1', 'versicolor')
     ('6.6', '2.9', '4.6', '1.3', 'versicolor')
     ('5.2', '2.7', '3.9', '1.4', 'versicolor')
     ('5', '2', '3.5', '1', 'versicolor')
     ('5.9', '3', '4.2', '1.5', 'versicolor')
     ('6', '2.2', '4', '1', 'versicolor')
     ('6.1', '2.9', '4.7', '1.4', 'versicolor')
     ('5.6', '2.9', '3.6', '1.3', 'versicolor')
     ('6.7', '3.1', '4.4', '1.4', 'versicolor')
     ('5.6', '3', '4.5', '1.5', 'versicolor')
     ('5.8', '2.7', '4.1', '1', 'versicolor')
     ('6.2', '2.2', '4.5', '1.5', 'versicolor')
     ('5.6', '2.5', '3.9', '1.1', 'versicolor')
     ('5.9', '3.2', '4.8', '1.8', 'versicolor')
     ('6.1', '2.8', '4', '1.3', 'versicolor')
     ('6.3', '2.5', '4.9', '1.5', 'versicolor')
     ('6.1', '2.8', '4.7', '1.2', 'versicolor')
     ('6.4', '2.9', '4.3', '1.3', 'versicolor')
     ('6.6', '3', '4.4', '1.4', 'versicolor')
     ('6.8', '2.8', '4.8', '1.4', 'versicolor')
     ('6.7', '3', '5', '1.7', 'versicolor')
     ('6', '2.9', '4.5', '1.5', 'versicolor')
     ('5.7', '2.6', '3.5', '1', 'versicolor')
     ('5.5', '2.4', '3.8', '1.1', 'versicolor')
     ('5.5', '2.4', '3.7', '1', 'versicolor')
     ('5.8', '2.7', '3.9', '1.2', 'versicolor')
     ('6', '2.7', '5.1', '1.6', 'versicolor')
     ('5.4', '3', '4.5', '1.5', 'versicolor')
     ('6', '3.4', '4.5', '1.6', 'versicolor')
     ('6.7', '3.1', '4.7', '1.5', 'versicolor')
     ('6.3', '2.3', '4.4', '1.3', 'versicolor')
     ('5.6', '3', '4.1', '1.3', 'versicolor')
     ('5.5', '2.5', '4', '1.3', 'versicolor')
     ('5.5', '2.6', '4.4', '1.2', 'versicolor')
     ('6.1', '3', '4.6', '1.4', 'versicolor')
     ('5.8', '2.6', '4', '1.2', 'versicolor')
     ('5', '2.3', '3.3', '1', 'versicolor')
     ('5.6', '2.7', '4.2', '1.3', 'versicolor')
     ('5.7', '3', '4.2', '1.2', 'versicolor')
     ('5.7', '2.9', '4.2', '1.3', 'versicolor')
     ('6.2', '2.9', '4.3', '1.3', 'versicolor')
     ('5.1', '2.5', '3', '1.1', 'versicolor')
     ('5.7', '2.8', '4.1', '1.3', 'versicolor')
     ('6.3', '3.3', '6', '2.5', 'virginica')
     ('5.8', '2.7', '5.1', '1.9', 'virginica')
     ('7.1', '3', '5.9', '2.1', 'virginica')
     ('6.3', '2.9', '5.6', '1.8', 'virginica')
     ('6.5', '3', '5.8', '2.2', 'virginica')
     ('7.6', '3', '6.6', '2.1', 'virginica')
     ('4.9', '2.5', '4.5', '1.7', 'virginica')
     ('7.3', '2.9', '6.3', '1.8', 'virginica')
     ('6.7', '2.5', '5.8', '1.8', 'virginica')
     ('7.2', '3.6', '6.1', '2.5', 'virginica')
     ('6.5', '3.2', '5.1', '2', 'virginica')
     ('6.4', '2.7', '5.3', '1.9', 'virginica')
     ('6.8', '3', '5.5', '2.1', 'virginica')
     ('5.7', '2.5', '5', '2', 'virginica')
     ('5.8', '2.8', '5.1', '2.4', 'virginica')
     ('6.4', '3.2', '5.3', '2.3', 'virginica')
     ('6.5', '3', '5.5', '1.8', 'virginica')
     ('7.7', '3.8', '6.7', '2.2', 'virginica')
     ('7.7', '2.6', '6.9', '2.3', 'virginica')
     ('6', '2.2', '5', '1.5', 'virginica')
     ('6.9', '3.2', '5.7', '2.3', 'virginica')
     ('5.6', '2.8', '4.9', '2', 'virginica')
     ('7.7', '2.8', '6.7', '2', 'virginica')
     ('6.3', '2.7', '4.9', '1.8', 'virginica')
     ('6.7', '3.3', '5.7', '2.1', 'virginica')
     ('7.2', '3.2', '6', '1.8', 'virginica')
     ('6.2', '2.8', '4.8', '1.8', 'virginica')
     ('6.1', '3', '4.9', '1.8', 'virginica')
     ('6.4', '2.8', '5.6', '2.1', 'virginica')
     ('7.2', '3', '5.8', '1.6', 'virginica')
     ('7.4', '2.8', '6.1', '1.9', 'virginica')
     ('7.9', '3.8', '6.4', '2', 'virginica')
     ('6.4', '2.8', '5.6', '2.2', 'virginica')
     ('6.3', '2.8', '5.1', '1.5', 'virginica')
     ('6.1', '2.6', '5.6', '1.4', 'virginica')
     ('7.7', '3', '6.1', '2.3', 'virginica')
     ('6.3', '3.4', '5.6', '2.4', 'virginica')
     ('6.4', '3.1', '5.5', '1.8', 'virginica')
     ('6', '3', '4.8', '1.8', 'virginica')
     ('6.9', '3.1', '5.4', '2.1', 'virginica')
     ('6.7', '3.1', '5.6', '2.4', 'virginica')
     ('6.9', '3.1', '5.1', '2.3', 'virginica')
     ('5.8', '2.7', '5.1', '1.9', 'virginica')
     ('6.8', '3.2', '5.9', '2.3', 'virginica')
     ('6.7', '3.3', '5.7', '2.5', 'virginica')
     ('6.7', '3', '5.2', '2.3', 'virginica')
     ('6.3', '2.5', '5', '1.9', 'virginica')
     ('6.5', '3', '5.2', '2', 'virginica')
     ('6.2', '3.4', '5.4', '2.3', 'virginica')
     ('5.9', '3', '5.1', '1.8', 'virginica')]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148

    3:将待处理数据的类型转化为float类型

    PetalLength = iris_data["Petal.Length"].astype(float)
    
    • 1
    print(PetalLength)
    
    • 1
    [1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.1 1.2 1.5 1.3 1.4
     1.7 1.5 1.7 1.5 1.  1.7 1.9 1.6 1.6 1.5 1.4 1.6 1.6 1.5 1.5 1.4 1.5 1.2
     1.3 1.4 1.3 1.5 1.3 1.3 1.3 1.6 1.9 1.4 1.6 1.4 1.5 1.4 4.7 4.5 4.9 4.
     4.6 4.5 4.7 3.3 4.6 3.9 3.5 4.2 4.  4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4.
     4.9 4.7 4.3 4.4 4.8 5.  4.5 3.5 3.8 3.7 3.9 5.1 4.5 4.5 4.7 4.4 4.1 4.
     4.4 4.6 4.  3.3 4.2 4.2 4.2 4.3 3.  4.1 6.  5.1 5.9 5.6 5.8 6.6 4.5 6.3
     5.8 6.1 5.1 5.3 5.5 5.  5.1 5.3 5.5 6.7 6.9 5.  5.7 4.9 6.7 4.9 5.7 6.
     4.8 4.9 5.6 5.8 6.1 6.4 5.6 5.1 5.6 6.1 5.6 5.5 4.8 5.4 5.6 5.1 5.1 5.9
     5.7 5.2 5.  5.2 5.4 5.1]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    4:排序

    np.sort(PetalLength)
    
    • 1
    print(np.sort(PetalLength))
    
    • 1
    [1.  1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4
     1.4 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
     1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.9 1.9 3.  3.3 3.3 3.5
     3.5 3.6 3.7 3.8 3.9 3.9 3.9 4.  4.  4.  4.  4.  4.1 4.1 4.1 4.2 4.2 4.2
     4.2 4.3 4.3 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.6 4.6
     4.7 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 5.  5.  5.  5.
     5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.3 5.3 5.4 5.4 5.5 5.5 5.5 5.6
     5.6 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.8 5.8 5.8 5.9 5.9 6.  6.  6.1 6.1 6.1
     6.3 6.4 6.6 6.7 6.7 6.9]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    5:数组去重

    np.unique(PetalLength)
    
    • 1
    print(np.unique(PetalLength))
    
    • 1
    [1.  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 3.  3.3 3.5 3.6 3.7 3.8 3.9 4.  4.1
     4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.  5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
     6.  6.1 6.3 6.4 6.6 6.7 6.9]
    
    • 1
    • 2
    • 3

    6:对指定列求和、均值、标准差、方差、最小值和最大值

    6-1:求和
    print(np.sum(PetalLength))
    
    • 1
    563.7
    
    • 1
    6-2:均值
    print(np.mean(PetalLength))
    
    • 1
    3.7580000000000005
    
    • 1
    6-3:标准差
    print(np.std(PetalLength))
    
    • 1
    1.759404065775303
    
    • 1
    6-4:方差
    print(np.var(PetalLength))
    
    • 1
    3.0955026666666665
    
    • 1
    6-5:最小值
    print(np.min(PetalLength))
    
    • 1
    1.0
    
    • 1
    6-6:最大值
    print(np.max(PetalLength))
    
    • 1
    6.9
    
    • 1

    完整代码

    import numpy as np
    import csv
    
    iris_data = []
    with open("iris.csv") as csvfile:
        csv_reader = csv.reader(csvfile)
        birth_header = next(csv_reader)
        for row in csv_reader:
            iris_data.append(row)
    
    iris_list = []
    for row in iris_data:
        iris_list.append(tuple(row[1:]))
    
    datatype = np.dtype([("Sepal.Length", np.str_, 40),
                         ("Sepal.Width", np.str_, 40),
                         ("Petal.Length", np.str_, 40),
                         ("Petal.Width", np.str_, 40),
                         ("Species", np.str_, 40)])
    
    iris_data = np.array(iris_list, dtype = datatype)
    
    PetalLength = iris_data["Petal.Length"].astype(float)
    
    np.sort(PetalLength)
    
    np.unique(PetalLength)
    
    print(np.sum(PetalLength))#求和
    
    print(np.mean(PetalLength))#均值
    
    print(np.std(PetalLength))#标准差
    
    print(np.var(PetalLength))#方差
    
    print(np.min(PetalLength))#最小值
    
    print(np.max(PetalLength))#最大值
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
  • 相关阅读:
    Android 7 btsnoop代码介绍
    大厂经典指针笔试题
    JAVA开发(分布式SpringCloud全家桶一些组件读法)
    SpringBoot视图渲染技术
    Python基础语法(3)
    中文编程开发语言工具应用案例:ps5体验馆计时收费管理系统软件
    avue实现用户本地保存自定义配置字段属性及注意事项(基于tj-vue2-tools)
    高防CDN怎样保护网站安全的
    【开源日记】宿舍断电自动关灯设备(二)
    HandlerAdapter接口类的简介说明
  • 原文地址:https://blog.csdn.net/qq_52331221/article/details/127432609