• 【BERT-多标签文本分类实战】之七——训练-评估-测试与运行主程序


    ·请参考本系列目录:【BERT-多标签文本分类实战】之一——实战项目总览
    ·下载本实战项目资源:>=点击此处=<

    [1] 损失函数与评价指标

      多标签文本分类任务,用的损失函数是BCEWithLogitsLoss,不是交叉熵损失函数cross_entropy!!

    BCEWithLogitsLosscross_entropy有什么区别?
    +
    1)cross_entropy它就是算单标签的损失的,大家去看一下它的公式,它对一个文本只取概率最大的那个标签;
    +
    2)BCEWithLogitsLoss对模型输出取的是sigmoid,而cross_entropy对模型的输出取的是softmaxsigmoidsoftmax虽然都是把一组数据放缩到[0,1]区间,但是softmax具有排斥性,放缩后的一组数据之和为1,所以这样一组标签概率只会有一个较大值;而sigmoid也是把一组数据放缩到[0,1]区间,但它更类似于等比例缩放,原来大的数现在还大,可以有多个较大的概率存在,所以sigmoid更适合在多标签文本分类任务中。所以要使用BCEWithLogitsLoss

      本次实战项目中使用的评价指标有:准确率accuracy、精确率precision、汉明损失hamming_loss。是基于sklearn库实现的。

    # 计算多标签准确率、精确率、hm
    def APH(y_true, y_pred):
        return metrics.accuracy_score(y_true, y_pred), \
               metrics.precision_score(y_true, y_pred, average='samples'), \
               metrics.hamming_loss(y_true, y_pred)
    '
    运行

    还有其他评价指标,召回率、F1等等,评价指标还分可为micro和macro,种类较多,可以参考地址:https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

    [2] 采样

      采样是指:把模型输出出来的概率,转化成独热数组,通常使用阈值为0.5的阈值函数,即概率大于0.5的标签采样为1,否则为0。本项目设置阈值为0.4、且只取2个标签。

    # 预测多标签的输出,把概率值转化为独热数组
    def Predict(outputs, alpha=0.4):
        predic = torch.sigmoid(outputs)
        zero = torch.zeros_like(predic)
        topk = torch.topk(predic, k=2, dim=1, largest=True)[1]
        for i, x in enumerate(topk):
            for y in x:
                if predic[i][y] > alpha:
                    zero[i][y] = 1
        return zero.cpu()
    '
    运行

    [3] 训练

      训练代码如下:

    def train(config, model, train_iter, dev_iter, test_iter, is_write):
        start_time = time.time()
        model.train()
    
        # 普通算法
        # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    
        # bert算法
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
        # BertAdam implements weight decay fix,
        # BertAdam doesn't compensate for bias as in the regular Adam optimizer.
        optimizer = AdamW(optimizer_grouped_parameters,lr=config.learning_rate,eps=1e-8)
    
        # 学习率指数衰减,每次epoch:学习率 = gamma * 学习率
        scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps = 0,
                                                num_training_steps = len(train_iter) * config.num_epochs)
        total_batch = 0  # 记录进行到多少batch
        dev_best_loss = float('inf')
        last_improve = 0  # 记录上次验证集loss下降的batch数
        flag = False  # 记录是否很久没有效果提升
        if is_write:
            writer = SummaryWriter(
                log_dir="{0}/{1}__{2}__{3}__{4}".format(config.log_path, config.batch_size, config.pad_size,
                                                             config.learning_rate, time.strftime('%m-%d_%H.%M', time.localtime())))
        for epoch in range(config.num_epochs):
            print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
    
            for i, (trains, labels) in enumerate(train_iter):
                outputs = model(trains)
                model.zero_grad()
                loss = Loss(outputs, labels)
                loss.backward()
                optimizer.step()
                if total_batch % 100 == 0:
                    # 每多少轮输出在训练集和验证集上的效果
                    true = labels
                    predic = Predict(outputs)
                    train_oe = OneError(outputs, true)
                    train_acc, train_pre, train_hl = APH(true.data.cpu().numpy(), predic.data.cpu().numpy())
    
                    dev_acc, dev_pre, dev_hl, dev_oe, dev_loss = evaluate(config, model, dev_iter)
                    if dev_loss < dev_best_loss:
                        dev_best_loss = dev_loss
                        torch.save(model.state_dict(), config.save_path)
                        improve = '*'
                        last_improve = total_batch
                    else:
                        improve = ''
                    time_dif = get_time_dif(start_time)
                    msg = 'Iter: {0:>6}, Train=== Loss: {1:>6.2}, Acc: {2:>6.2%}, Pre: {3:>6.2%}, HL: {4:>5.2} OE: {' \
                          '5:>6.2%}, Val=== Loss: {6:>5.2}, Acc: {7:>6.2%}, Pre: {8:>6.2%}, HL: {9:>5.2}, ' \
                          'OE: {10:>6.2%}, Time: {11} {12} '
                    print(msg.format(total_batch, loss.item(), train_acc, train_pre, train_hl, train_oe,
                                     dev_loss, dev_acc, dev_pre, dev_hl, dev_oe, time_dif, improve))
                    if is_write:
                        writer.add_scalar('loss/train', loss.item(), total_batch)
                        writer.add_scalar("acc/train", train_acc, total_batch)
                        writer.add_scalar("pre/train", train_pre, total_batch)
                        writer.add_scalar("oe/train", train_oe, total_batch)
                        writer.add_scalar("hamming loss/train", train_hl, total_batch)
                        writer.add_scalar("loss/dev", dev_loss, total_batch)
                        writer.add_scalar("acc/dev", dev_acc, total_batch)
                        writer.add_scalar("pre/dev", dev_pre, total_batch)
                        writer.add_scalar("oe/dev", dev_oe, total_batch)
                        writer.add_scalar("hamming loss/dev", dev_hl, total_batch)
                    model.train()
                total_batch += 1
                if total_batch - last_improve > config.require_improvement:
                    # 验证集loss超过1000batch没下降,结束训练
                    print("No optimization for a long time, auto-stopping...")
                    flag = True
                    break
            scheduler.step()  # 学习率衰减
            if flag:
                break
        if is_write:
            writer.close()
        return test(config, model, test_iter)
    '
    运行

      需要解释的几点:

      1、bert模型采用AdamW做优化,不同层要设置不同的权重衰减值;

      2、writer这个变量主要是做数据可视化的,参考博客:【深度学习】pytorch使用tensorboard可视化实验数据

    [4] 评估与测试

    def test(config, model, test_iter):
        # test
        model.load_state_dict(torch.load(config.save_path))
        model.eval()
        start_time = time.time()
        test_acc, test_pre, test_rec, test_hl, test_loss, test_report = evaluate(config, model, test_iter,
                                                                                 test=True)
        msg = 'Test Loss: {0:>5.2},  Test Acc: {1:>6.2%}, Test Pre: {2:>6.2%}, Test HL: {3:>5.2}, Test OE: {4:>6.2%}'
        print(msg.format(test_loss, test_acc, test_pre, test_rec, test_hl))
        print("Precision, Recall and F1-Score...")
        print(test_report)
        time_dif = get_time_dif(start_time)
        print("Time usage:", time_dif)
        return test_loss, test_acc, test_pre, test_rec, test_hl
    
    
    def evaluate(config, model, data_iter, test=False):
        model.eval()
        loss_total = 0
        predict_all = []
        labels_all = []
        with torch.no_grad():
            for texts, labels in data_iter:
                outputs = model(texts)
                oe = OneError(outputs.data.cpu(), labels.data.cpu())
                loss = Loss(outputs, labels)
                loss_total += loss
                labels = labels.data.cpu().numpy()
                predic = Predict(outputs.data)
                labels_all = np.append(labels_all, labels)
                predict_all = np.append(predict_all, predic.numpy())
    
        labels_all = labels_all.reshape(-1, config.num_classes)
        predict_all = predict_all.reshape(-1, config.num_classes)
        acc, pre, hl = APH(labels_all, predict_all)
        if test:
            report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=3)
            return acc, pre, hl, oe, loss_total / len(data_iter), report
        return acc, pre, hl, oe, loss_total / len(data_iter)
    '
    运行

    [5] 运行主程序run.py

    if __name__ == '__main__':
    
        """配置参数
            dataSet     : 数据集名称. required.
            model_name  : 模型名称. required. 可选值['bert']
            is_write    : 是否开启tensorboard的记录绘图模式. 可选值[False, True]
        """
    
        M = ['bert','bert_RNN','bert_RCNN','bert_DPCNN']
        I = [False, True]
    
        dataSet = 'Reuters-21578'
        is_write = I[0]
    
        for model_name in M:
            x = import_module('models.' + model_name)
            config = x.Config(dataSet)
            # 设置numpy的随机种子,以使得结果是确定的
            np.random.seed(1)
            # 为CPU设置种子用于生成随机数,以使得结果是确定的
            torch.manual_seed(1)
            # 为当前GPU设置随机种子,以使得结果是确定的
            torch.cuda.manual_seed_all(1)
            # 保证每次结果一样
            torch.backends.cudnn.deterministic = True
    
            start_time = time.time()
            print("Loading data...")
            train_data, dev_data, test_data = build_dataset(config)
            train_iter = build_iterator(train_data, config)
            dev_iter = build_iterator(dev_data, config)
            test_iter = build_iterator(test_data, config)
            time_dif = get_time_dif(start_time)
            print("Time usage:", time_dif)
    
            # train
            model = x.Model(config).to(config.device)
            print(model.parameters)
            print(f'The model has {sum(p.numel() for p in model.parameters() if p.requires_grad):,} trainable parameters')
            train(config, model, train_iter, dev_iter, test_iter, is_write)
    

      代码还是比较好懂的,但是还是有一个整体能运行起来的项目体验更佳。

  • 相关阅读:
    LinkedList详解
    2流高手速成记(之三):SpringBoot整合mybatis/mybatis-plus实现数据持久化
    WeOps上新|V3.12版本提升网络设备的自动化能力
    【Docker故障处理篇】运行容器报错“docker: failed to register layer...file exists.”解决方法
    随笔感悟:Mysql悲观锁和乐观锁
    线程的六种状态
    【机械仿真】基于matlab GUI直齿圆柱齿轮应力计算【含Matlab源码 2077期】
    重修SpringMVC(二)
    java程序中为什么经常使用tomcat
    List集合中的相邻元素是否满足升序排列
  • 原文地址:https://blog.csdn.net/qq_43592352/article/details/127096137