• hive on spark 执行sql报错


     sql差不多就是这个样子 疯狂join,然后别人说这个sql跑不动了。报错

    INFO] 2022-09-20 11:26:58.500  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:26:52,814    Stage-3_0: 11(+1,-2)/12    
        INFO  : 2022-09-20 11:26:55,823    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:03.504  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:26:58,832    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:08.507  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:01,841    Stage-3_0: 11(+1,-2)/12    
        INFO  : 2022-09-20 11:27:04,850    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:13.512  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:07,860    Stage-3_0: 11(+1,-2)/12    
        INFO  : 2022-09-20 11:27:10,869    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:18.518  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:13,878    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:23.524  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:16,887    Stage-3_0: 11(+1,-2)/12    
        INFO  : 2022-09-20 11:27:19,896    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:28.527  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:22,905    Stage-3_0: 11(+1,-2)/12    
        INFO  : 2022-09-20 11:27:25,914    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:33.534  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:28,924    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:38.538  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:31,933    Stage-3_0: 11(+1,-2)/12    
        INFO  : 2022-09-20 11:27:34,942    Stage-3_0: 11(+1,-2)/12    
    [INFO] 2022-09-20 11:27:39.058  - [taskAppId=TASK-1850-1276992-1359844]:[127] -  -> INFO  : 2022-09-20 11:27:37,951    Stage-3_0: 11(+1,-2)/12    
        ERROR : Spark job[3] failed
        java.util.concurrent.ExecutionException: Exception thrown by job
            at org.apache.spark.JavaFutureActionWrapper.getImpl(FutureAction.scala:337) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
            at org.apache.spark.JavaFutureActionWrapper.get(FutureAction.scala:342) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
            at org.apache.hive.spark.client.RemoteDriver$JobWrapper.call(RemoteDriver.java:404) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
            at org.apache.hive.spark.client.RemoteDriver$JobWrapper.call(RemoteDriver.java:365) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
            at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_181]
            at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_181]
            at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_181]
            at java.lang.Thread.run(Thread.java:748) [?:1.8.0_181]
        Caused by: org.apache.spark.SparkException: Job 3 cancelled 
            at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler

    failJobAndIndependentStages(DAGScheduler.scala:1890) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGScheduler.handleJobCancellation(DAGScheduler.scala:1825) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2077) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.util.EventLoop" role="presentation">failJobAndIndependentStages(DAGScheduler.scala:1890) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGScheduler.handleJobCancellation(DAGScheduler.scala:1825) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2077) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049) [sparkcore2.112.4.0cdh6.3.2.jar:2.4.0cdh6.3.2]atorg.apache.spark.util.EventLoop
    anon$1.run(EventLoop.scala:49) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
        ERROR : FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Spark job failed due to: Job 3 cancelled 
        INFO  : Completed executing command(queryId=hive_20220920112336_c6ae7869-4649-4e2b-92d8-de2de872623b); Time taken: 240.664 seconds

    提取有用信息

    Stage-3_0: 11(+1,-2)/12    一直这个

    很明显stage3有12个task有一个或者2个一直报错,然后最后有一个跑不动了

    报错信息ERROR : FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Spark job failed due to: Job 3 cancelled 

    这个就看不出啥。

    去spark看日志

     好像也没啥,点进stage看日志。

    继续点stderr

    22/09/20 10:44:41 INFO spark.SparkRecordHandler: processing 8000000 rows: used memory = 4763256512
    22/09/20 10:44:41 INFO exec.MapOperator: MAP[0]: records read - 8000001
    2022-09-20 10:44:41	Processing rows:	1900000	Hashtable size:	1899999	Memory usage:	5115896488	percentage:	0.893
    22/09/20 10:44:41 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:41	Processing rows:	1900000	Hashtable size:	1899999	Memory usage:	5115896488	percentage:	0.893
    2022-09-20 10:44:44	Processing rows:	2800000	Hashtable size:	2799999	Memory usage:	4183913512	percentage:	0.731
    22/09/20 10:44:44 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:44	Processing rows:	2800000	Hashtable size:	2799999	Memory usage:	4183913512	percentage:	0.731
    2022-09-20 10:44:44	Processing rows:	2700000	Hashtable size:	2699999	Memory usage:	4286480568	percentage:	0.748
    22/09/20 10:44:44 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:44	Processing rows:	2700000	Hashtable size:	2699999	Memory usage:	4286480568	percentage:	0.748
    2022-09-20 10:44:45	Processing rows:	2000000	Hashtable size:	1999999	Memory usage:	5207901112	percentage:	0.909
    22/09/20 10:44:45 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:45	Processing rows:	2000000	Hashtable size:	1999999	Memory usage:	5207901112	percentage:	0.909
    22/09/20 10:44:45 ERROR spark.SparkMapRecordHandler: Error processing row: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row {"ap_invoice_distribution_id":"93445098","ap_invoice_id":"6642260","invoice_line_number":"1","ou_key":null,"product_key":null,"region_key":null,"account_key":null,"erp_channel_key":null,"org_key":null,"po_header_id":null,"po_release_id":null,"po_line_id":null,"currency_code":null,"base_currency_code":null,"distribution_type":null,"set_of_book_id":null,"gl_flag":null,"gl_date":null,"unit_price":null,"distribution_amount":null,"base_amount":null,"account_desc":null,"creation_date":null,"creator_id":null,"creator_name":null,"last_update_date":null,"last_updater_id":null,"last_updater_name":null,"etl_create_batch_id":null,"etl_last_update_batch_id":null,"etl_create_job_id":null,"etl_last_update_job_id":null,"etl_create_date":null,"etl_last_update_by":null,"etl_last_update_date":null,"etl_source_system_id":null,"etl_delete_flag":"N","prepay_distribution_id":null}
    org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row {"ap_invoice_distribution_id":"93445098","ap_invoice_id":"6642260","invoice_line_number":"1","ou_key":null,"product_key":null,"region_key":null,"account_key":null,"erp_channel_key":null,"org_key":null,"po_header_id":null,"po_release_id":null,"po_line_id":null,"currency_code":null,"base_currency_code":null,"distribution_type":null,"set_of_book_id":null,"gl_flag":null,"gl_date":null,"unit_price":null,"distribution_amount":null,"base_amount":null,"account_desc":null,"creation_date":null,"creator_id":null,"creator_name":null,"last_update_date":null,"last_updater_id":null,"last_updater_name":null,"etl_create_batch_id":null,"etl_last_update_batch_id":null,"etl_create_job_id":null,"etl_last_update_job_id":null,"etl_create_date":null,"etl_last_update_by":null,"etl_last_update_date":null,"etl_source_system_id":null,"etl_delete_flag":"N","prepay_distribution_id":null}
    	at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:494)
    	at org.apache.hadoop.hive.ql.exec.spark.SparkMapRecordHandler.processRow(SparkMapRecordHandler.java:133)
    	at org.apache.hadoop.hive.ql.exec.spark.HiveMapFunctionResultList.processNextRecord(HiveMapFunctionResultList.java:48)
    	at org.apache.hadoop.hive.ql.exec.spark.HiveMapFunctionResultList.processNextRecord(HiveMapFunctionResultList.java:27)
    	at org.apache.hadoop.hive.ql.exec.spark.HiveBaseFunctionResultList.hasNext(HiveBaseFunctionResultList.java:85)
    	at scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:42)
    	at scala.collection.Iterator$class.foreach(Iterator.scala:891)
    	at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
    	at org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127)
    	at org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127)
    	at org.apache.spark.SparkContext$$anonfun$38.apply(SparkContext.scala:2232)
    	at org.apache.spark.SparkContext$$anonfun$38.apply(SparkContext.scala:2232)
    	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    	at org.apache.spark.scheduler.Task.run(Task.scala:121)
    	at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407)
    	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408)
    	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413)
    	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    	at java.lang.Thread.run(Thread.java:748)
    Caused by: org.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionException: 2022-09-20 10:44:45	Processing rows:	2000000	Hashtable size:	1999999	Memory usage:	5207901112	percentage:	0.909
    	at org.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionHandler.checkMemoryStatus(MapJoinMemoryExhaustionHandler.java:99)
    	at org.apache.hadoop.hive.ql.exec.HashTableSinkOperator.process(HashTableSinkOperator.java:259)
    	at org.apache.hadoop.hive.ql.exec.SparkHashTableSinkOperator.process(SparkHashTableSinkOperator.java:85)
    	at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:882)
    	at org.apache.hadoop.hive.ql.exec.FilterOperator.process(FilterOperator.java:126)
    	at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:882)
    	at org.apache.hadoop.hive.ql.exec.TableScanOperator.process(TableScanOperator.java:130)
    	at org.apache.hadoop.hive.ql.exec.MapOperator$MapOpCtx.forward(MapOperator.java:146)
    	at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:484)
    	... 19 more

    这里好像比较清楚了。首先

    Memory usage: 5207901112 percentage: 0.909

    好像是内存到一个阈值了,然后就报错了。个人感觉是0.9

    然后保错的具体原因是 org.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionException

    注意这个异常 一个mapjoin 一个memory 超过

    这个时候有两个选择

    1.直接百度   2.去查源码

    肯定先选1

    https://www.jianshu.com/p/962fa4b4ca13

    得到解决答案  set hive.auto.convert.join=false

    那么开始假装研究2

    下载hive源码 找到 SparkMapRecordHandler类 ,搜索Error processing row

    1. @Override
    2. public void processRow(Object key, Object value) throws IOException {
    3. if (!anyRow) {
    4. OperatorUtils.setChildrenCollector(mo.getChildOperators(), oc);
    5. anyRow = true;
    6. }
    7. // reset the execContext for each new row
    8. execContext.resetRow();
    9. try {
    10. // Since there is no concept of a group, we don't invoke
    11. // startGroup/endGroup for a mapper
    12. mo.process((Writable) value);
    13. if (LOG.isInfoEnabled()) {
    14. logMemoryInfo();
    15. }
    16. } catch (Throwable e) {
    17. abort = true;
    18. Utilities.setMapWork(jc, null);
    19. if (e instanceof OutOfMemoryError) {
    20. // Don't create a new object if we are already out of memory
    21. throw (OutOfMemoryError) e;
    22. } else {
    23. String msg = "Error processing row: " + e;
    24. LOG.error(msg, e);
    25. throw new RuntimeException(msg, e);
    26. }
    27. }

     注意这个代码 我们肯定是mo.process处理value的时候报错

    那这个mo是啥呢?继续看

    1. if (mrwork.getVectorMode()) {
    2. mo = new VectorMapOperator(runtimeCtx);
    3. } else {
    4. mo = new MapOperator(runtimeCtx);
    5. }

    这个是啥,看过我其他文章的我都会提到这个,这个vector叫矢量化,也就是看你开启矢量化

    set hive.vectorized.execution.enabled=false;
    set hive.vectorized.execution.reduce.enabled=false;

    我们再看这两个mapOperator的process的区别 说实话源码有点难看。先不看了,根据日志是普通mapOperator()

    日志里有

    spark.SparkRecordHandler: maximum memory = 5726797824=5.33G

    这个是因为我们之前设置的excutor.memory=6G,其中有一些reseverd啥的。

    然后跑着跑着就快跑到了 5251681352。

    这里就很奇怪 数据库里总数据才6000多w 我这个task直接处理了2400w都ok,

    下面的处理了1000w怎么就开始叫唤了?没法继续看日志 

    注意这个ui图 

    node13 处理了 task 2 和task6  其中task2是因为node31的task2失败了重试的。

    为什么node13 处理task2和6没失败呢? 

    task 6有24780000, task2有12314310

    注意task2是在6都快干了一半的时候才开始的 。

    再接着看node13的日志

    task6 process  

    Processing rows: 1700000 Hashtable size: 1699999 Memory usage: 2057941392 percentage: 0.359

    task2 process 这里也勉强能够看到 0.49->0.544->0.448 这里变少了 肯定有GC

    Processing rows: 5600000 Hashtable size: 5599999 Memory usage: 3490224928 percentage: 0.609

    接着 我们看node23的日志

    不看了,写的太累了。 还要各种截图。

    简单的来说吧,为什么报错

    executor node23就6G 两个任务同时运行GC 来不及,所以oom了。

    怎么解决?

    1.加大executor.memory 最简单的办法,所有任务都可以用这个。

    2.注意这里是mapjoin,需要加载数据到内存里,所以别人的文章都是关闭convert.join

      我也试了确实ok

    3.增加task的数量。如下图 这个文件格式如下 是真的垃圾。大的打 小的小

     看这个图很容易看出node13 和node23处理的数据差不多,只是数据分布不均而已。 

    4.增加内存使用率 默认0.9 改为0.99  感觉就一点卵用

    HIVEHASHTABLEMAXMEMORYUSAGE("hive.mapjoin.localtask.max.memory.usage", (float) 0.90,
        "This number means how much memory the local task can take to hold the key/value into an in-memory hash table. \n" +
        "If the local task's memory usage is more than this number, the local task will abort by itself. \n" +
        "It means the data of the small table is too large to be held in memory."),

    5.看网上的文章也说过 好像是把大表的kv放到内存里了,那么可以尝试使用hint 指定mapjoin

    6.gc太垃圾,换个好点的GC,这块研究不多只知道parallel GC cms

  • 相关阅读:
    淘宝卖家为啥不退差价怎么回事 淘宝客服不退差价
    解读可解释性机器学习:理解解释性基准模型(EBM)
    java专题训练(数字加密)
    c++视觉---使用轨迹条设置图片的对比度,亮度
    pytorch中Tensor(张量)
    Java学习笔记 --- HashSet
    docker(七)SpringBoot集群搭建 Nginx负载
    SpringBoot项目实现发布订阅模式,真的很简单
    尿素偶联Urea-siRNA Conjugates|Cyclodextrin-siRNA-β-CD环糊精修饰RNA核酸(解析说明)
    智能生产线数字孪生有什么特点?AR智慧运维供应商首选广州华锐互动
  • 原文地址:https://blog.csdn.net/cclovezbf/article/details/126950236