
代价: 采药时间 T
价值: w
0 - 1背包问题
#include
using namespace std;
const int N = 1010;
int n, m;
int f[N];
int main() {
cin >> m >> n;
for (int i = 1; i <= n; i ++ ) {
int v, w;
cin >> v >> w;
for (int j = m; j >= v; j -- ) {
f[j] = max(f[j], f[j - v] + w);
}
}
cout << f[m];
return 0;
}

总代价: 箱子容量 V
代价: 小物品体积
价值: 小物品体积
0-1背包问题
#include
using namespace std;
const int N = 20010;
int n, m;
int f[N];
int main() {
cin >> m >> n;
for (int i = 1; i <= n; i ++ ) {
int v;
cin >> v;
for (int j = m; j >= v; j -- ) {
f[j] = max(f[j], f[j - v] + v);
}
}
cout << m - f[m];
return 0;
}

代价: v1 精灵球数量, v2 皮卡丘体力值
价值: 收服小精灵的数量
双重代价的 0-1 背包问题
#include
using namespace std;
const int N = 1010;
int f[N][N];
int V1, V2, w;
int n, m;
int main() {
cin >> V1 >> V2 >> w;
for (int i = 1; i <= w; i ++ ) {
int v1, v2;
cin >> v1 >> v2;
for (int j = V1; j >= v1; j -- ) {
for (int k = V2; k >= v2; k -- ) {
f[j][k] = max(f[j][k], f[j - v1][k - v2] + 1);
}
}
}
// 得皮卡丘体力小于等于0的野生小精灵不会被小智收服。
cout << f[V1][V2 - 1] << " ";
int j = V2 - 1;
while (j > 0 && f[V1][j - 1] == f[V1][V2 - 1]) j -- ;
cout << V2 - j;
return 0;
}


#include
using namespace std;
const int N = 10010;
int f[N];
int n, m;
int main() {
cin >> n >> m;
f[0] = 1;
for (int i = 1; i <= n; i ++ ) {
int v;
cin >> v;
for (int j = m; j >= v; j -- ) {
f[j] += f[j - v];
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 30010;
int n, m;
int f[N];
int main() {
cin >> m >> n;
for (int i = 1; i <= n; i ++ ) {
int v, w;
cin >> v >> w;
w = v * w;
for (int j = m; j >= v; j -- ) {
f[j] = max(f[j], f[j - v] + w);
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 10010;
int n, m, T;
int f[N];
struct Stone{
int s, e, l;
bool operator < (const Stone &t) const {
return s * t.l < l * t.s;
}
}stone[N];
int main() {
cin >> T;
int cnt = T;
while (T -- ) {
cin >> n;
m = 0;
for (int i = 1; i <= n; i ++ ) {
int s, e, l;
cin >> s >> e >> l;
stone[i] = {s, e, l};
m += s;
}
sort(stone + 1, stone + n + 1);
memset (f, -0x3f, sizeof f);
f[0] = 0;
for (int i = 1; i <= n; i ++ ) {
int s = stone[i].s, e = stone[i].e, l = stone[i].l;
for (int j = m; j >= s; j -- ) {
f[j] = max(f[j], f[j - s] + e - (j - s) * l);
}
}
int res = 0;
for (int i = 1; i <= m; i ++ ) res = max(res, f[i]);
printf("Case #%d: %d\n", cnt - T, res);
}
return 0;
}

方案数转移:设定 f[0] = 1, 当满足条件 - v 时,变可得到 0, 实现方案数量的累加
#include
using namespace std;
const int N = 1010;
int m;
int v[5] = {0, 10, 20, 50, 100};
int f[N];
int main() {
cin >> m;
f[0] = 1;
for (int i = 1; i <= 4; i ++ ) {
for (int j = v[i]; j <= m; j ++ ) {
f[j] += f[j - v[i]];
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 3010;
typedef long long LL;
int n, m;
LL f[N];
int main() {
cin >> n >> m;
f[0] = 1;
for (int i = 1; i <= n; i ++ ) {
int v;
cin >> v;
for (int j = v; j <= m; j ++ ) {
f[j] += f[j - v];
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 25010;
int f[N], v[N];
int n, T, m;
int main() {
cin >> T;
while (T -- ) {
cin >> n;
memset(f, 0, sizeof f);
for (int i = 1; i <= n; i ++ ) cin >> v[i], m = max(v[i], m);
f[0] = 1;
for (int i = 1; i <= n; i ++ ) {
for (int j = v[i]; j <= m; j ++ ) {
f[j] += f[j - v[i]];
}
}
int ans = 0;
for (int i = 1; i <= n; i ++ ) {
if (f[v[i]] == 1) ans ++;
}
cout << ans << endl;
}
return 0;
}

#include
using namespace std;
const int N = 2e4 + 10;
typedef pair<int, int> PII;
int n, m;
int f[N];
vector<PII> G;
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) {
int v, w, s;
cin >> v >> w >> s;
for (int k = 1; k <= s; k *= 2) {
s -= k;
G.push_back({v*k, w*k});
}
if (s > 0) G.push_back({v*s, w*s});
}
for (int i = 0; i <= G.size(); i ++ ) {
int v = G[i].first, w = G[i].second;
for (int j = m; j >= v; j -- ) {
f[j] = max(f[j], f[j - v] + w);
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 6010;
typedef pair<int, int> PII;
int n, m;
int f[N];
vector<PII> G;
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) {
int v, w, s;
cin >> v >> w >> s;
for (int k = 1; k < s; k *= 2) {
s -= k;
G.push_back({k * v, k * w});
}
if (s) G.push_back({s * v, s * w});
}
for (int i = 0; i < G.size(); i ++ ) {
int v = G[i].first, w = G[i].second;
for (int j = m; j >= v; j -- ) {
f[j] = max(f[j], f[j - v] + w);
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 1010;
int n, m;
int f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) {
int v, w, s;
cin >> v >> w >> s;
if (s == -1) {
for (int j = m; j >= v; j -- ) {
f[j] = max(f[j], f[j - v] + w);
}
} else if (s == 0) {
for (int j = v; j <= m; j ++ ) {
f[j] = max(f[j], f[j - v] + w);
}
} else {
for (int k = 1; k <= s; k *= 2) {
for (int j = m; j >= k * v; j -- ) {
f[j] = max(f[j], f[j - k * v] + k * w);
}
s -= k;
}
if (s) {
for (int j = m; j >= s * v; j -- ) {
f[j] = max(f[j], f[j - s * v] + s * w);
}
}
}
}
cout << f[m];
return 0;
}

#include
using namespace std;
const int N = 110;
int f[N][N];
int V, M, n;
int main() {
cin >> n >> V >> M;
for (int i = 1; i <= n; i ++ ) {
int v, m, w;
cin >> v >> m >> w;
for (int j = V; j >= v; j -- ) {
for (int k = M; k >= m; k -- ) {
f[j][k] = max(f[j][k], f[j - v][k - m] + w);
}
}
}
cout << f[V][M];
return 0;
}

#include
using namespace std;
const int N = 100;
int f[N][N];
int V, M, n;
int main() {
cin >> V >> M >> n;
memset (f, 0x3f, sizeof f);
f[0][0] = 0;
for (int i = 1; i <= n; i ++ ) {
int v, m, w;
cin >> v >> m >> w;
for (int j = V; j >= 0; j -- ) {
for (int k = M; k >= 0; k -- ) {
// 如果超过容量的就用 f[0][0] 这个状态来取,此时一定不会比最小值小
f[j][k] = min(f[j][k], f[max(0, j - v)][max(0, k - m)] + w);
}
}
}
cout << f[V][M];
return 0;
}

#include
using namespace std;
const int N = 30;
int n, m;
int f[N][N], w[N][N];
int way[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) {
for (int j = 1; j <= m; j ++ ) {
cin >> w[i][j];
}
}
for (int i = 1; i <= n; i ++ ) {
for (int j = 0; j <= m; j ++ ) {
for (int k = 0; k <= m; k ++ ) {
if (k <= j) f[i][j] = max(f[i][j], f[i - 1][j - k] + w[i][k]);
}
}
}
cout << f[n][m] << endl;
int j = m;
for (int i = n; i >= 1; i -- ) {
for (int k = 0; k <= j; k ++ ) {
if (f[i][j] == f[i - 1][j - k] + w[i][k]) {
way[i] = k;
j -= k;
break;
}
}
}
for (int i = 1; i <= n; i ++ ) cout << i << " " << way[i] << endl;
return 0;
}

#include
using namespace std;
const int N = 1010, mod = 1e9 + 7;
int n, m;
int f[N], cnt[N];
int main() {
cin >> n >> m;
for (int i = 0; i <= m; i ++ ) {
cnt[i] = 1;
}
for (int i = 1; i <= n; i ++ ) {
int v, w;
cin >> v >> w;
for (int j = m; j >= v; j -- ) {
int value = f[j - v] + w;
if (f[j] < f[j - v] + w) {
f[j] = f[j - v] + w;
cnt[j] = cnt[j - v];
} else if (f[j] == f[j - v] + w) {
cnt[j] += cnt[j - v];
}
cnt [j] %= mod;
}
}
cout << cnt[m];
return 0;
}

题目要求输出字典序最小的解,假设存在一个包含第 1 个物品的最优解,为了确保字典序最小那么我们必然要选第一个。那么问题就转化成从 2 ~ N 2~N 2~N 这些物品中找到最优解。之前的 f ( i , j ) f(i,j) f(i,j) 记录的都是前 i i i 个物品总容量为 j j j 的最优解,那么我们现在将 f(i,j) 定义为从第 i i i 个元素到最后一个元素总容量为 j j j 的最优解。接下来考虑状态转移:
f ( i , j ) = m a x ( f ( i + 1 , j ) , f ( i + 1 , j − v [ i ] ) + w [ i ] ) f(i,j)=max(f(i+1,j),f(i+1,j−v[i])+w[i]) f(i,j)=max(f(i+1,j),f(i+1,j−v[i])+w[i])
两种情况,第一种是不选第 i i i 个物品,那么最优解等同于从第 i + 1 i+1 i+1 个物品到最后一个元素总容量为 j j j 的最优解;第二种是选了第 i i i 个物品,那么最优解等于当前物品的价值 w [ i ] w[i] w[i] 加上从第 i + 1 i+1 i+1 个物品到最后一个元素总容量为 j − v [ i ] j−v[i] j−v[i] 的最优解。
计算完状态表示后,考虑如何的到最小字典序的解。首先 f ( 1 , m ) f(1,m) f(1,m) 肯定是最大价值,那么我们便开始考虑能否选取第1个物品呢。
如果 f ( 1 , m ) = f ( 2 , m − v [ 1 ] ) + w [ 1 ] f(1,m) = f(2,m−v[1])+w[1] f(1,m)=f(2,m−v[1])+w[1],说明选取了第 1 个物品可以得到最优解。
如果 f ( 1 , m ) = f ( 2 , m ) f(1,m)=f(2,m) f(1,m)=f(2,m),说明不选取第一个物品才能得到最优解。
如果 f ( 1 , m ) = f ( 2 , m ) = f ( 2 , m − v [ 1 ] ) + w [ 1 ] f(1,m)=f(2,m)=f(2,m−v[1])+w[1] f(1,m)=f(2,m)=f(2,m−v[1])+w[1],说明选不选都可以得到最优解,但是为了考虑字典序最小,我们也需要选取该物品。
#include
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
//逆序做 01 背包问题
/*
0 2 4 6 6 8
0 0 4 4 6 8
0 0 0 4 6 6
0 0 0 0 6 6
*/
for (int i = n; i >= 1; i -- ) {
for (int j = 0; j <=m; j ++ ) {
f[i][j] = f[i + 1][j];
if(j >= v[i]) f[i][j] = max(f[i][j], f[i + 1][j - v[i]] + w[i]);
}
}
int j = m;
//正序开始,即为结果的开始位置,从f[1][m],开始寻找最优价值构成的物品
for (int i = 1; i <= n; i ++ ) {
if (j >= v[i] && f[i][j] == f[i + 1][j - v[i]] + w[i]) {
j -= v[i];
cout << i << " ";
}
}
return 0;
}