• 决定迭代次数的两种效应


    由于对称导致的空间结构耦合的不规则效应,和等位点数值差导致的线性效应共同决定了神经网络的迭代次数。而增加训练集图片数量和扩大图片的尺寸都可能弱化对称性,并同时弱化结构耦合的不规则效应,使得线性效应占优。并让移位距离曲线s变得平滑,s和迭代次数n之间的反比关系变得更清晰。

    这次继续验算移位距离假设,所用的训练集是mnist的0,1,2,3,4的第一张图片,但不二值化。用间隔取点的办法把图片化成9*9。如1*2*3为网络

    ( 1, 2, 3 )---81*30*3---( 1, 0, 0 )( 0, 1, 0 )( 0, 0, 1 )

    的简记。就是用1,2,3的第一张图片不断的循环往复,直到收敛。每个收敛误差收敛199次,统计迭代次数n平均值,并统计每个网络的移位距离s。

    共进行了10组,得到数据

    9*9

    1*3*4

    1*2*3

    1*2*4

    2*3*4

    0*1*2

    0*1*3

    0*2*3

    0*2*4

    0*1*4

    0*3*4

    δ

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    迭代次数n

    0.01

    2675.106

    2539.864

    2526.673

    2513.533

    2521.915

    2421.905

    2397.648

    2400.538

    2330.372

    2329.07

    0.001

    17858.37

    16999.56

    17071.4

    16846.06

    16699.34

    16548.66

    16261.65

    16182.34

    15971.54

    15970.8

    9.00E-04

    19700.4

    18658.47

    18738.02

    18506.6

    18353.31

    18201.87

    17895.76

    17746.46

    17501.54

    17508.73

    8.00E-04

    21862.45

    20760.96

    20900.6

    20576.08

    20509.6

    20217.84

    19941.41

    19803.96

    19503.26

    19452.48

    7.00E-04

    24688.67

    23522.75

    23429.41

    23133.07

    23022.54

    22821.45

    22387.06

    22187.65

    22107.34

    21977.67

    s

    36.1098

    49.62353

    41.16863

    50.14118

    52.1098

    51.74902

    57.21569

    55.12941

    47.10588

    54.54118

    所以这个表格一共收敛了5*199*10次

    将收敛误差为7e-4的迭代次数n画成图

    将移位距离s画成图

    尽管有两个点波动较大,但整体上n减小而s增加的反比趋势依然是存在的。

    移位距离假设

    (A,B)---m*n*k---(1,0)(0,1)

    用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移位路径的过程。而熵H与最短移位距离S成正比,迭代次数n与S成反比。

    移位规则汇总

    移位距离就是等位点数值差的绝对值的和S=Σ|a-b|,如果训练集有多张图片取s的平均值,如果是多分类问题则移位距离为所有两两组合移位距离的和。

    如对一组3*3的矩阵

    S=s0+s1+,…,+s8=|a0-b0|+|a1-b1|+,…,+|a8-b8|

    如果是3分类问题,就应该实现3个形态之间的两两分类,也就是要完成3对等位点之间的差。

    因此移位距离

    S=Sab+Sac+Sbc=

    |a0-b0|+|a1-b1|+|a2-b2|+|a3-b3|+

    |a0-c0|+|a1-c1|+|a2-c2|+|a3-c3|+

    |b0-c0|+|b1-c1|+|b2-c2|+|b3-c3|

  • 相关阅读:
    react-高阶组件
    ip地址会随网络变化而变化吗
    ASP.NET教务平台—学籍管理模块开发与设计
    python基础知识入门
    css取消移动端长按元素背景色
    商品API接口优秀案例 │ 国家电网办公物资电商化采购项目API解决方案
    ROS1创建自定义服务并使用
    Kettle工具使用小结1
    Java 泛型
    虚拟机VMware的使用流程以及出现的问题附解决方法
  • 原文地址:https://blog.csdn.net/georgesale/article/details/126892562