• 应用统计学方差分析之单因素方差分析原理解析(含Python代码)


    基本概念:

    在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。因素可分为两类,-类是人为可控的测量数据,比如温度、身高等;一类是不可控的随机因素,例如,测量误差,气象条件等。因素所处的状态称为因素的水平。如果在试验过程中,只有一个因素在改变,称为单因素试验。方差分析Q (Analysis ofVariance,简称ANOVA)主要用于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否一致)

    实例:

     

     

     单因素方差分析的假设条件:

    注:现实中当用到方差分析时候,一定是两组数据很相似,所以用到方差分析,若两组数据差异均值方差较大,则仅通过均值定性判断,就可以了。

    通常实际应用中要先做同方差显著性水平检验(方差齐次性检验)

    分析步骤: 

    现在假定一个因素B具有c个水平的因变量进行方差分析检验,例如上面提到的工厂轧制设备是因素,分别试验轧制了10块板材是水平。

    1、建立假设
    H0: μ1=μ2=…=μc;
    H1: μ1,μ2,…,μc不全相等。

    2、计算样本均值和样本方差。

      3、计算组间方差

    组间方差:反映不同组样本数据波动情形和不同组内部波动情形。

      4、组内方差的估计:

    组内方差:反映该组样本数据波动情况。

     

    组内方差和组间方差的关系:

    将组间方差与组内方差相比,可以得到一个F统计量(F=组间方差/组内方差),可以证明该统计量服从F分布。
    5、构造F统计量进行检验
    F=组间方差/组内方差=MSB/MSE~F(c-1, nT-1)
    如果c个总体均值不相等,则组间方差(MSB)会大于组内方差(MSE)。当F值大到某一临界值时,就可以拒绝H0。临界值的大小由给定的α和自由度决定。所以,当给定显著性水平为α时,F的拒绝域为F>Fα(c-1,nT-c)。

    6、方差分析表

     

     7,应用

    实例分析:

    例题:有8位食品专家对三种配方的食品随机品尝,然后给食品的口感分别打分(满分10分),如下表。问三种配方的平均分数是否相同?(α=0.05)(假定打分服从标准相等的正态分布)。

     解:设μA,μB,μC分别代表配方1、2、3。已知因变量是分数,因素是配方,水平为3,具有相同的样本容量8。根据题意建立假设:
    H0: μA=μB=μC;
    H1: 总体均值不全相等。
    首先,计算样本均值及方差

     

     Python代码案例分析:

    案例:

    某保险公司想了解一下某险种在不同的地区是否有不同的索赔额。于是他们就搜集了四个不同地区一年的索赔额情况的记录如下表:



    尝试判断一下, 地区这个因素是否对与索赔额产生了显著的影响?

     

     

    1. import pandas as pd
    2. import numpy as np
    3. from scipy import stats
    4. from statsmodels.formula.api import ols
    5. from statsmodels.stats.anova import anova_lm
    6. # 这是那四个水平的索赔额的观测值
    7. A1 = [1.6, 1.61, 1.65, 1.68, 1.7, 1.7, 1.78]
    8. A2 = [1.5, 1.64, 1.4, 1.7, 1.75]
    9. A3 = [1.6, 1.55, 1.6, 1.62, 1.64, 1.60, 1.74, 1.8]
    10. A4 = [1.51, 1.52, 1.53, 1.57, 1.64, 1.6]
    11. data = [A1, A2, A3, A4]
    12. # 方差的齐性检验
    13. w, p = stats.levene(*data)
    14. if p < 0.05:
    15. print('方差齐性假设不成立')
    16. # 成立之后, 就可以进行单因素方差分析
    17. f, p = stats.f_oneway(*data)
    18. print(f, p) # 2.06507381767795 0.13406910483160134

     

     

     

     

  • 相关阅读:
    记一次上海更换驾驶证记录
    python和SciPy速成
    并查集的应用
    Blazor实战——Known框架多表增删改查
    【Paddle】图像分类竞赛baseline——以智能硬件语音控制的时频图分类挑战赛为例
    Android Studio修改模拟器AVD Manger目录
    与BBA争夺市场,阿维塔「智能电动」首战目标怎么定?
    LeetCode每日一题——剑指 Offer II 091. 粉刷房子
    探秘三维地形瓦片服务:流畅展现全球地貌的秘密揭秘
    2022操作系统实验李丁丁
  • 原文地址:https://blog.csdn.net/qq_44386182/article/details/126879580