
考虑一个直线拟合问题:
y
=
b
1
(
1
+
e
b
2
−
b
3
x
)
1
/
b
4
y = \frac{b_1}{(1+e^{b_2-b_3x})^{1/b_4}}
y=(1+eb2−b3x)1/b4b1
我们给定一些数据
{
x
i
,
y
i
}
,
∀
i
=
1
,
.
.
.
,
n
\{x_i, y_i\},\ \forall i=1,... ,n
{xi,yi}, ∀i=1,...,n来求解参数
b
1
,
b
2
,
b
3
b_1, b_2, b_3
b1,b2,b3和
b
4
b_4
b4,这个问题可以等价为,需要寻找一组参数
b
1
,
b
2
,
b
3
b_1, b_2, b_3
b1,b2,b3和
b
4
b_4
b4,使得如下方程的数值最小:
E
(
b
1
,
b
2
,
b
3
,
b
4
)
=
∑
i
f
2
(
b
1
,
b
2
,
b
3
,
b
4
;
x
i
,
y
i
)
=
∑
i
(
b
1
(
1
+
e
b
2
−
b
3
x
i
)
1
/
b
4
−
y
i
)
2
E(b1,b2,b3,b4)=∑if2(b1,b2,b3,b4;xi,yi)=∑i(b1(1+eb2−b3xi)1/b4−yi)2
E(b1,b2,b3,b4)=i∑f2(b1,b2,b3,b4;xi,yi)=i∑((1+eb2−b3xi)1/b4b1−yi)2
为了用ceres来解决这个问题,我们需要定义一个CostFunction(损失函数)来计算给定的
x
x
x和
y
y
y的残差
f
f
f和导数。利用高等数学求导的知识,我们可以将
f
f
f分别
b
1
,
b
2
,
b
3
,
b
4
b_1,b_2,b3,b_4
b1,b2,b3,b4求导,得到如下结果:
D
1
f
(
b
1
,
b
2
,
b
3
,
b
4
;
x
,
y
)
=
1
(
1
+
e
b
2
−
b
3
x
)
1
/
b
4
D
2
f
(
b
1
,
b
2
,
b
3
,
b
4
;
x
,
y
)
=
−
b
1
e
b
2
−
b
3
x
b
4
(
1
+
e
b
2
−
b
3
x
)
1
/
b
4
+
1
D
3
f
(
b
1
,
b
2
,
b
3
,
b
4
;
x
,
y
)
=
b
1
x
e
b
2
−
b
3
x
b
4
(
1
+
e
b
2
−
b
3
x
)
1
/
b
4
+
1
D
4
f
(
b
1
,
b
2
,
b
3
,
b
4
;
x
,
y
)
=
b
1
log
(
1
+
e
b
2
−
b
3
x
)
b
4
2
(
1
+
e
b
2
−
b
3
x
)
1
/
b
4
D1f(b1,b2,b3,b4;x,y)=1(1+eb2−b3x)1/b4D2f(b1,b2,b3,b4;x,y)=−b1eb2−b3xb4(1+eb2−b3x)1/b4+1D3f(b1,b2,b3,b4;x,y)=b1xeb2−b3xb4(1+eb2−b3x)1/b4+1D4f(b1,b2,b3,b4;x,y)=b1log(1+eb2−b3x)b24(1+eb2−b3x)1/b4
D1f(b1,b2,b3,b4;x,y)D2f(b1,b2,b3,b4;x,y)D3f(b1,b2,b3,b4;x,y)D4f(b1,b2,b3,b4;x,y)=(1+eb2−b3x)1/b41=b4(1+eb2−b3x)1/b4+1−b1eb2−b3x=b4(1+eb2−b3x)1/b4+1b1xeb2−b3x=b42(1+eb2−b3x)1/b4b1log(1+eb2−b3x)
有了这些导数,我们可以定义损失函数如下:
class Rat43Analytic : public SizedCostFunction<1,4> {
public:
Rat43Analytic(const double x, const double y) : x_(x), y_(y) {}
virtual ~Rat43Analytic() {}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
const double b1 = parameters[0][0];
const double b2 = parameters[0][1];
const double b3 = parameters[0][2];
const double b4 = parameters[0][3];
residuals[0] = b1 * pow(1 + exp(b2 - b3 * x_), -1.0 / b4) - y_;
if (!jacobians) return true;
double* jacobian = jacobians[0];
if (!jacobian) return true;
jacobian[0] = pow(1 + exp(b2 - b3 * x_), -1.0 / b4);
jacobian[1] = -b1 * exp(b2 - b3 * x_) *
pow(1 + exp(b2 - b3 * x_), -1.0 / b4 - 1) / b4;
jacobian[2] = x_ * b1 * exp(b2 - b3 * x_) *
pow(1 + exp(b2 - b3 * x_), -1.0 / b4 - 1) / b4;
jacobian[3] = b1 * log(1 + exp(b2 - b3 * x_)) *
pow(1 + exp(b2 - b3 * x_), -1.0 / b4) / (b4 * b4);
return true;
}
private:
const double x_;
const double y_;
};
上面的代价函数的很明显太冗余了,不方便阅读和编写程序。因此,在实践中,我们将缓存一些子表达式以提高其效率,这将给我们提供如下内容:
class Rat43AnalyticOptimized : public SizedCostFunction<1,4> {
public:
Rat43AnalyticOptimized(const double x, const double y) : x_(x), y_(y) {}
virtual ~Rat43AnalyticOptimized() {}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
const double b1 = parameters[0][0];
const double b2 = parameters[0][1];
const double b3 = parameters[0][2];
const double b4 = parameters[0][3];
const double t1 = exp(b2 - b3 * x_);
const double t2 = 1 + t1;
const double t3 = pow(t2, -1.0 / b4);
residuals[0] = b1 * t3 - y_;
if (!jacobians) return true;
double* jacobian = jacobians[0];
if (!jacobian) return true;
const double t4 = pow(t2, -1.0 / b4 - 1);
jacobian[0] = t3;
jacobian[1] = -b1 * t1 * t4 / b4;
jacobian[2] = -x_ * jacobian[1];
jacobian[3] = b1 * log(t2) * t3 / (b4 * b4);
return true;
}
private:
const double x_;
const double y_;
};
这两种表达式的时间耗时如下,来自官网:

#include
#include
#include
class Rat43Analytic : public ceres::SizedCostFunction<1,4>
{
private:
const double x_;
const double y_;
public:
Rat43Analytic(const double x,const double y):x_(x),y_(y){}
virtual ~Rat43Analytic(){}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const{
const double b1=parameters[0][0];
const double b2=parameters[0][1];
const double b3=parameters[0][2];
const double b4=parameters[0][3];
residuals[0]=b1*pow(1+exp(b2-b3*x_),-1.0/b4)-y_;
if(!jacobians) return true;
double* jacobian=jacobians[0];
if(!jacobian) return true;
jacobian[0] = pow(1 + exp(b2 - b3 * x_), -1.0 / b4);
jacobian[1] = -b1 * exp(b2 - b3 * x_) *
pow(1 + exp(b2 - b3 * x_), -1.0 / b4 - 1) / b4;
jacobian[2] = x_ * b1 * exp(b2 - b3 * x_) *
pow(1 + exp(b2 - b3 * x_), -1.0 / b4 - 1) / b4;
jacobian[3] = b1 * log(1 + exp(b2 - b3 * x_)) *
pow(1 + exp(b2 - b3 * x_), -1.0 / b4) / (b4 * b4);
return true;
}
};
class Rat43AnalyticOptimized : public ceres::SizedCostFunction<1,4> {
public:
Rat43AnalyticOptimized(const double x, const double y) : x_(x), y_(y) {}
virtual ~Rat43AnalyticOptimized() {}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
const double b1 = parameters[0][0];
const double b2 = parameters[0][1];
const double b3 = parameters[0][2];
const double b4 = parameters[0][3];
const double t1 = exp(b2 - b3 * x_);
const double t2 = 1 + t1;
const double t3 = pow(t2, -1.0 / b4);
residuals[0] = b1 * t3 - y_;
if (!jacobians) return true;
double* jacobian = jacobians[0];
if (!jacobian) return true;
const double t4 = pow(t2, -1.0 / b4 - 1);
jacobian[0] = t3;
jacobian[1] = -b1 * t1 * t4 / b4;
jacobian[2] = -x_ * jacobian[1];
jacobian[3] = b1 * log(t2) * t3 / (b4 * b4);
return true;
}
private:
const double x_;
const double y_;
};
int main(int argc, char const *argv[])
{
/*生成观测数据及初始化参数*/
double B1=1.0,B2= 2.0,B3=2.0,B4=2.0;//true value
double b1=2.0,b2=-1.0,b3=0.0,b4=1.5;//estimate value
int N=200;//num of data
double w_sigma=0.02;//sigma of noise
/*此处仅用opencv库添加随机噪声,如果有其余添加噪声的方法,可以不用调用opencv*/
cv::RNG rng((unsigned)time(NULL));//opencv random generator
std::vector<double> x_data,y_data;
for (int i = 0; i < N; i++)
{
double X=i;
x_data.push_back(X);
y_data.push_back(B1*pow(1+exp(B2-B3*X),-1/B4)+rng.gaussian(w_sigma*w_sigma));
}
/*定义需要优化的变量,并赋予初值*/
double parameters[4]={b1,b2,b3,b4};
const double parameters_init[4]={b1,b2,b3,b4};//赋予初值
/*构建问题*/
ceres::Problem problem;
/*建立优化方程*/
ceres::LossFunction* loss_function=new ceres::HuberLoss(1.0);
for (int i = 0; i < N; i++)
{
ceres::CostFunction* cost_function=new Rat43Analytic(x_data[i],y_data[i]);
// ceres::CostFunction* cost_function=new Rat43AnalyticOptimized(x_data[i],y_data[i]);
problem.AddResidualBlock(cost_function,loss_function,parameters);
}
problem.SetParameterLowerBound(parameters,0,-3.5);
problem.SetParameterUpperBound(parameters,0, 3.5);
problem.SetParameterLowerBound(parameters,1,-3.5);
problem.SetParameterUpperBound(parameters,1, 3.5);
problem.SetParameterLowerBound(parameters,2,-3.5);
problem.SetParameterUpperBound(parameters,2, 3.5);
problem.SetParameterLowerBound(parameters,3,-3.5);
problem.SetParameterUpperBound(parameters,3, 3.5);
/*运行优化器*/
ceres::Solver::Options options;
options.linear_solver_type=ceres::DENSE_QR;
options.max_num_iterations=5e2;
options.function_tolerance=1e-10;
options.minimizer_progress_to_stdout=true;
ceres::Solver::Summary summary;
ceres::Solve(options,&problem,&summary);
std::cout << "parameter_true : " << B1
<<" "<<B2
<<" "<<B3
<<" "<<B4
<<" " <<std::endl;
std::cout << "parameter_init : " << parameters_init[0]
<<" "<<parameters_init[1]
<<" "<<parameters_init[2]
<<" "<<parameters_init[3]
<<" " <<std::endl;
std::cout << "parameter_final : " << parameters[0]
<<" "<<parameters[1]
<<" "<<parameters[2]
<<" "<<parameters[3]
<<" " <<std::endl;
std::cout << "parameter_error : " << parameters[0]-B1
<<" "<<parameters[1]-B2
<<" "<<parameters[2]-B3
<<" "<<parameters[3]-B4
<<" " <<std::endl;
return 0;
}
parameter_true : 1 2 2 2
parameter_init : 2 -1 0 1.5
parameter_final : 0.999944 2.00035 1.99574 2.00476
parameter_error : -5.6159e-05 0.000353811 -0.0042581 0.00476159
cmake_minimum_required(VERSION 2.8)
project(ceresCurveFitting)
set(CMAKE_CXX_STANDARD 14)
find_package(OpenCV 3 REQUIRED )
find_package(Ceres REQUIRED )
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories( ${CERES_INCLUDE_DIRS})
include_directories("/usr/include/eigen3")
add_executable(AnalyticDerivatives AnalyticDerivatives.cpp)
target_link_libraries(AnalyticDerivatives ${CERES_LIBRARIES} ${OpenCV_LIBS})
解析导数适用情况参考了官网的介绍,如下。
