1、我们可以把一个区间[t,tr]表示成一个对象i,其中属性i.low=t为低端点(lowendpoint),属性i.high=t为高端点(high endpoint)。我们称区间i和i’重叠(overlap),如果i∩i’≠B,即如果i. low≤i’.high且i’.low≤i.high。如图14-3所示,任何两个区间i和i’满足区间三分律(interval trichotomy),即下面三条性质之一成立:

2、区间树支持下面这些操作:
INTERVAL-INSERT(T, x):将包含区间属性int的元素x插人到区间树T中。
INTERVAL-DELETE(T, x):从区间树T中删除元素x。
INTERVAL- SEARCH(T, i): 返回-个指向区间树T中元素x的指针,使x.int与i重叠;
若此元素不存在,则返回T.nil。
3、四步法设计操作

步骤1:基础数据结构
我们选择这样一棵红黑树,其每个结点x包含一个区间属性x.int,且x的关键字为区间的低端点x. int.low。因此,该数据结构按中序遍历列出的就是按低端点的次序排列的各区间。
步骤2:附加信息
每个结点x中除了自身区间信息之外,还包含一个值x.max,它是以x为根的子树中所有区间的端点的最大值。
步骤3:对信息的维护
我们必须验证n个结点的区间树上的插人和删除操作能否在O(lgn)时间内完成。通过给定
区间x. int和结点x的子结点的max值,可以确定x. max值:
x.max = max(x.int.high, x.left.max, x.night.max)
这样,根据定理14.1可知,插入和删除操作的运行时间为O(lgn)。事实上,在一次旋转后,更新max属性只需O(1)的时间。
步骤4:设计新的操作
这里我们仅需要唯一的一个新操作INTERVAL SEARCH(T, i), 它是用来找出树T中与区间i重叠的那个结点。若树中与i重叠的结点不存在,则下面过程返回指向哨兵T. nil的指针。
INTERVAL-SEARCH(T,i)
x = T.root
while x != T.nil and i does not overlap x.int
if x.left != T.nil and x.left.max >= i.low
x = x.left
else x = x.right
return x
#include
#include
#include
using namespace std;
#define SIZE 15
struct Node
{
int low;//低端点
int high;//高端点
int max;
string color;//颜色
Node *pParent;//父结点
Node *pLeft;//左孩子
Node *pRight;//右孩子
};
class RBT
{
public:
RBT();
~RBT();
void LeftRotate(Node* px);//左旋
void RightRotate(Node* px);//右旋
void Insert(Node* pz);//插入
void InsertFixUp(Node* pz);//插入调整
void InorderTreeWalk( Node* px );//中序遍历
Node* GetRoot(){ return this->pT_root; }
Node* GetNil(){ return this->pT_nil; }
Node* IntervalSearch( Node* i );//区间树查找
private:
Node* pT_nil;
Node* pT_root;
};
RBT::RBT()
{//构造一棵区间树
pT_nil = new Node;
pT_nil->color = "Black";//颜色设为BLACK
pT_nil->max = 0;
pT_root = pT_nil;
}
RBT::~RBT()
{
if( pT_nil != NULL )
delete pT_nil;
}
void RBT::LeftRotate(Node *px)
{//左旋
Node* py = px->pRight;//用py记录px的右孩子
px->pRight = py->pLeft;//px的右孩子是py的左孩子
if( py->pLeft != pT_nil )
py->pLeft->pParent = px;
py->pParent = px->pParent;//py的父结点为px的父结点
if(px->pParent == pT_nil )//下面判断py为父结点的哪个孩子
pT_root = py;//根
else if( px == px->pParent->pLeft )
px->pParent->pLeft = py;//左
else px->pParent->pRight = py;//右
py->pLeft = px;
px->pParent = py;
py->max = px->max;
px->max = max( px->max,max(px->pLeft->max,px->pRight->max) );
}
void RBT::RightRotate(Node *py)
{//右旋
Node* px = py->pLeft;
py->pLeft = px->pRight;
px->pRight->pParent = py;
px->pParent = py->pParent;
if(py->pParent == pT_nil )
pT_root = px;
else if( py == py->pParent->pLeft )
py->pParent->pLeft = px;
else py->pParent->pRight = px;
px->pRight = py;
py->pParent = px;
px->max = py->max;
py->max = max( py->max,max(py->pLeft->max,py->pRight->max) );
}
void RBT::Insert( Node* pz)
{//插入
pz->max = pz->high;
Node* py = pT_nil;
Node *px = pT_root;
while( px != pT_nil )
{
px->max = max( pz->high,px->max );
py = px;//用py记录px
if( pz->low < px->low )
px = px->pLeft;
else
px = px->pRight;
}
pz->pParent = py;
if( py == pT_nil )
pT_root = pz;
else if( pz->low < py->low )
py->pLeft = pz;
else
py->pRight = pz;
pz->pLeft = pT_nil;
pz->pRight = pT_nil;
pz->color = "Red";
InsertFixUp( pz );
}
void RBT::InsertFixUp(Node* pz)
{//插入修正
Node* py = NULL;
while( "Red" == pz->pParent->color )
{
if(pz->pParent == pz->pParent->pParent->pLeft )
{
py = pz->pParent->pParent->pRight;
if( py->color == "Red" )
{
pz->pParent->color = "Black";
py->color = "Black";
pz->pParent->pParent->color = "Red";
pz = pz->pParent->pParent;
}
else
{
if( pz == pz->pParent->pRight )
{
pz = pz->pParent;
LeftRotate( pz );
}
pz->pParent->color = "Black";
pz->pParent->pParent->color = "Red";
RightRotate( pz->pParent->pParent );
}
}
else if(pz->pParent == pz->pParent->pParent->pRight )
{
py = pz->pParent->pParent->pLeft;
if( py->color == "Red" )
{
pz->pParent->color = "Black";
py->color = "Black";
pz->pParent->pParent->color = "Red";
pz = pz->pParent->pParent;
}
else
{
if( pz == pz->pParent->pLeft )
{
pz = pz->pParent;
RightRotate( pz );
}
pz->pParent->color = "Black";
pz->pParent->pParent->color = "Red";
LeftRotate( pz->pParent->pParent );
}
}
}
pT_root->color = "Black";
}
void RBT::InorderTreeWalk( Node* px )
{//中序遍历
if( px != pT_nil )
{
InorderTreeWalk( px->pLeft );
cout << px->low << "-" << px->color << '-' << px->max <<endl;
InorderTreeWalk( px->pRight );
}
}
Node* RBT::IntervalSearch( Node* i)
{//区间树查找
Node* x = pT_root;查找与i重叠的区间x的过程从以x为根的树根开始
while( x != pT_nil && ( x->high < i->low || i->high < x->low ) )
{//当x指向pT.nil或找到重叠区间时过程结束
if( x->pLeft != pT_nil && x->pLeft->max >= i->low )
x = x->pLeft;//去左区间查找
else
x = x->pRight;//去右区间查找
}
return x;
}
int main()
{
RBT rbt;
int a[10][2] = {{6,20},{5,9},{25,36},{3,8},{15,23},{17,30},{26,28},{0,5},{6,12},{19,25}};
Node* ptemp = new Node[ SIZE ];
for(int i=0;i<10;i++)
{
ptemp[i].low = a[i][0];
ptemp[i].high = a[i][1];
rbt.Insert( &ptemp[i] );
}
rbt.InorderTreeWalk( rbt.GetRoot() );
cout << endl;
bool bquit = true;
Node temp;
while(bquit)
{
cout << "输入低端点和高端点: ";
cin >> temp.low >> temp.high;
Node* p = rbt.IntervalSearch(&temp);
if(p != rbt.GetNil() )
cout << p->low << "-" << p->color << '-' << p->max <<',' << endl;
else
cout << "无重叠区间" << endl;
cout << "1-继续/0-结束): ";
cin >> bquit;
}
delete []ptemp;
return 0;
}