计算下方行列式(
D
n
D_n
Dn 为
n
n
n 阶行列式):
D
2
n
=
∣
a
n
b
n
⋱
⋅
⋅
⋅
a
1
b
1
c
1
d
1
⋅
⋅
⋅
⋱
c
n
d
n
∣
D_{2n} = |anbn⋱⋅⋅⋅a1b1c1d1⋅⋅⋅⋱cndn|
D2n=
ancn⋱⋅⋅⋅a1c1b1d1⋅⋅⋅⋱bndn
因为行列式等于其第一列各元素与其对应的代数余子式的乘积之和,所以有
D
2
n
=
a
n
∣
a
n
−
1
b
n
−
1
⋱
⋅
⋅
⋅
a
1
b
1
c
1
d
1
⋅
⋅
⋅
⋱
c
n
−
1
d
n
−
1
d
n
∣
+
c
n
∣
b
n
a
n
−
1
b
n
−
1
⋱
⋅
⋅
⋅
a
1
b
1
c
1
d
1
⋅
⋅
⋅
⋱
c
n
−
1
d
n
−
1
∣
(1)
D_{2n} = a_n |an−1bn−1⋱⋅⋅⋅a1b1c1d1⋅⋅⋅⋱cn−1dn−1dn| + c_n |bnan−1bn−1⋱⋅⋅⋅a1b1c1d1⋅⋅⋅⋱cn−1dn−1| \tag{1}
D2n=an
an−1cn−1⋱⋅⋅⋅a1c1b1d1⋅⋅⋅⋱bn−1dn−1dn
+cn
an−1cn−1⋱⋅⋅⋅a1c1b1d1⋅⋅⋅⋱bn−1dn−1bn
(1)
在上式
(
1
)
(1)
(1) 中,左侧的
2
n
−
1
2n-1
2n−1 阶行列式的第
2
n
−
1
2n-1
2n−1 列仅有
d
n
d_n
dn 一个元素,右侧的
2
n
−
1
2n-1
2n−1 阶行列式的第
2
n
−
1
2n-1
2n−1 列也仅有
b
n
b_n
bn 一个元素,因此将其这两个行列式写成第
2
n
−
1
2n-1
2n−1 列各元素与其对应的代数余子式的乘积之和,于是上式
(
1
)
(1)
(1) 可以写成
D
2
n
=
a
n
d
n
∣
a
n
−
1
b
n
−
1
⋱
⋅
⋅
⋅
a
1
b
1
c
1
d
1
⋅
⋅
⋅
⋱
c
n
−
1
d
n
−
1
∣
+
c
n
b
n
∣
a
n
−
1
b
n
−
1
⋱
⋅
⋅
⋅
a
1
b
1
c
1
d
1
⋅
⋅
⋅
⋱
c
n
−
1
d
n
−
1
∣
=
(
a
n
d
n
+
c
n
b
n
)
D
2
n
−
2
(2)
D_{2n} = a_n d_n |an−1bn−1⋱⋅⋅⋅a1b1c1d1⋅⋅⋅⋱cn−1dn−1| + c_n b_n |an−1bn−1⋱⋅⋅⋅a1b1c1d1⋅⋅⋅⋱cn−1dn−1| = (a_n d_n + c_n b_n) D_{2n-2} \tag{2}
D2n=andn
an−1cn−1⋱⋅⋅⋅a1c1b1d1⋅⋅⋅⋱bn−1dn−1
+cnbn
an−1cn−1⋱⋅⋅⋅a1c1b1d1⋅⋅⋅⋱bn−1dn−1
=(andn+cnbn)D2n−2(2)
根据上例归纳得到
D
2
n
=
(
a
n
d
n
+
b
n
c
n
)
(
a
n
−
1
d
n
−
1
+
b
n
−
1
c
n
−
1
)
⋯
(
a
1
d
1
+
b
1
c
1
)
=
∏
i
=
1
n
(
a
i
d
i
+
b
i
c
i
)
D_{2n} = (a_n d_n + b_n c_n) (a_{n-1} d_{n-1} + b_{n-1} c_{n-1}) \cdots (a_1 d_1 + b_1 c_1) = \prod_{i=1}^n (a_i d_i + b_i c_i)
D2n=(andn+bncn)(an−1dn−1+bn−1cn−1)⋯(a1d1+b1c1)=i=1∏n(aidi+bici)