• cf Educational Codeforces Round 133 D. Chip Move


    原题:

    D. Chip Move
    time limit per test2 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    There is a chip on the coordinate line. Initially, the chip is located at the point 0. You can perform any number of moves; each move increases the coordinate of the chip by some positive integer (which is called the length of the move). The length of the first move you make should be divisible by k, the length of the second move — by k+1, the third — by k+2, and so on.

    For example, if k=2, then the sequence of moves may look like this: 0→4→7→19→44, because 4−0=4 is divisible by 2=k, 7−4=3 is divisible by 3=k+1, 19−7=12 is divisible by 4=k+2, 44−19=25 is divisible by 5=k+3.

    You are given two positive integers n and k. Your task is to count the number of ways to reach the point x, starting from 0, for every x∈[1,n]. The number of ways can be very large, so print it modulo 998244353. Two ways are considered different if they differ as sets of visited positions.

    Input
    The first (and only) line of the input contains two integers n and k (1≤k≤n≤2⋅10^5).

    Output
    Print n integers — the number of ways to reach the point x, starting from 0, for every x∈[1,n], taken modulo 998244353.

    Examples
    input
    8 1
    output
    1 1 2 2 3 4 5 6
    input
    10 2
    output
    0 1 0 1 1 1 1 2 2 2
    Note
    Let’s look at the first example:

    Ways to reach the point 1: [0,1];

    Ways to reach the point 2: [0,2];

    Ways to reach the point 3: [0,1,3], [0,3];

    Ways to reach the point 4: [0,2,4], [0,4];

    Ways to reach the point 5: [0,1,5], [0,3,5], [0,5];

    Ways to reach the point 6: [0,1,3,6], [0,2,6], [0,4,6], [0,6];

    Ways to reach the point 7: [0,2,4,7], [0,1,7], [0,3,7], [0,5,7], [0,7];

    Ways to reach the point 8: [0,3,5,8], [0,1,5,8], [0,2,8], [0,4,8], [0,6,8], [0,8].

    中文:

    给你一个一维数轴,开始时候你0点。每次可以向前移动,每次移动的大小必须是移动次数加上+ k的整数倍。比如k等于2,那么第一次移动可以是2,4,6…;第二次移动的距离需要时k + 1的整数倍,比如3, 6, 9以此类推。
    最后问你,要走到n,有多少种走法?

    代码:

    #include 
    using namespace std;
     
    const int mod = 998244353;
    const int maxn = 2e5 + 2;
    
    int dp[maxn];
    int pre_dp[maxn];
    int ans[maxn];
    int main() {
        int n, k;
        ios::sync_with_stdio(false);
        while (cin >> n >> k) {
            memset(dp, 0, sizeof(dp));
            memset(pre_dp, 0, sizeof(pre_dp));
            memset(ans, 0, sizeof(ans));
            pre_dp[0] = 1;
            int sum;
            for (int j = 1; j * (j + 1) <= 2 * n; j++) {
                sum = 0;
                for (int i = 1; i <= n; i++) {
                    if (i >= k + j - 1) {
                        dp[i] = (dp[i - (k + j - 1)] % mod + pre_dp[i - (k + j - 1)] % mod) % mod;
                    }
                    ans[i] = (ans[i] + dp[i]) % mod;
                }
                for (int i = 0; i <= n; i++) {
                    pre_dp[i] = dp[i];
                    dp[i] = 0;
                }
            }
            for (int i = 1; i <= n; i++) {
                if (i != n) {
                    cout << ans[i] << " ";
                } else {
                    cout << ans[i] << endl;
                }
            }
        }
        return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41

    解答:

    一个组合计数问题。
    d p [ i ] [ j ] dp[i][j] dp[i][j]表示走到i走了j步时的走法。
    那么状态转移方程可以表示成
    d p [ i ] [ j ] = d p [ i − ( k + j − 1 ) ] [ j ] + d p [ i − ( k + j − 1 ) ] [ j − 1 ] dp[i][j] = dp[i - (k + j - 1)][j] + dp[i - (k + j -1)][j-1] dp[i][j]=dp[i(k+j1)][j]+dp[i(k+j1)][j1]

    等号左侧第一个状态表示,走了j步可以移动到 i − ( k + j − 1 ) i - (k + j - 1) i(k+j1)的位置,那么走j步也一定可以移动i的位置,因为可以移动两倍的 k + j − 1 k+j - 1 k+j1的距离,从 d p [ i − 2 ∗ ( k + j − 1 ) ] [ j − 1 ] dp[i - 2 * (k + j - 1)][j-1] dp[i2(k+j1)][j1]转移过来,两倍的 k + j − 1 k + j - 1 k+j1因为也是k + j的倍数。

    等号左侧第二个状态,表示从了j - 1步,此时再走一步,步长为 k + j − 1 k + j - 1 k+j1即可。

    int ans[maxn][650];
     
    int main() {
        int n, k;
        ios::sync_with_stdio(false);
        while (cin >> n >> k) {
            memset(ans, 0, sizeof(ans));
            ans[0][0] = 1;
            int sum;
            for (int i = 1; i <= n; i++) {
                sum = 0;
                for (int j = 1; j * (j + 1) <= 2 * n; j++) {
                    if (i >= k + j - 1) {
                        ans[i][j] = (ans[i - (k + j - 1)][j] % mod + ans[i - (k + j - 1)][j - 1] % mod) % mod;
                        sum =  (sum + ans[i][j]) % mod;
                    }
                }
                cout << sum << " ";
            }
            cout << endl;
        }
        return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    上面的状态可以优化,用滚动数组的方式来节省空间。否则mle

  • 相关阅读:
    【Obsidian样式】修改文件夹名称和文件名称前的图标
    分享6个SQL小技巧
    Pycharm开发环境下创建python运行的虚拟环境(自动执行安装依赖包)
    Java从零学起(九)----集合
    无人机倾斜摄影技术在测绘领域的应用
    Java 图像处理(一)
    深度学习:资料整理
    【Unity3D】获取UGUI位置不正确问题
    论文超详细精读|八千字:AS-GCN
    [附源码]计算机毕业设计JAVA亿上汽车在线销售管理系统
  • 原文地址:https://blog.csdn.net/tengfei461807914/article/details/126836878