• 二元线性方程组与二阶行列式


    前置知识:


    设二元线性方程组:
    { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 (1)

    {a11x1+a12x2=b1a21x1+a22x2=b2" role="presentation" style="position: relative;">{a11x1+a12x2=b1a21x1+a22x2=b2
    \tag{1} {a11x1+a12x2=b1a21x1+a22x2=b2(1)
    a 11 a 22 − a 12 a 21 ≠ 0 a_{11} a_{22} - a_{12} a_{21} \ne 0 a11a22a12a21=0 时,用消元法分别消去未知数 x 2 x_2 x2 x 1 x_1 x1,可以求得方程组 (1) 的解为
    x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 (2) x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \hspace{1em} x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}} \tag{2} x1=a11a22a12a21b1a22a12b2,x2=a11a22a12a21a11b2b1a21(2)
    利用二阶行列式的概念,若记
    D = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 D 1 = ∣ b 1 a 12 b 2 a 22 ∣ = b 1 a 22 − a 12 b 2 D 2 = ∣ a 11 b 1 a 21 b 2 ∣ = a 11 b 2 − b 1 a 21
    D=|a11a12a21a22|=a11a22a12a21D1=|b1a12b2a22|=b1a22a12b2D2=|a11b1a21b2|=a11b2b1a21" role="presentation" style="position: relative;">D=|a11a12a21a22|=a11a22a12a21D1=|b1a12b2a22|=b1a22a12b2D2=|a11b1a21b2|=a11b2b1a21
    DD1D2= a11a21a12a22 =a11a22a12a21= b1b2a12a22 =b1a22a12b2= a11a21b1b2 =a11b2b1a21

    那么式 (2) 可以写成
    x 1 = D 1 D = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 21 a 22 ∣ , x 2 = D 2 D = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ (3) x_1 = \frac{D_1}{D} = \frac{
    |b1a12b2a22|" role="presentation" style="position: relative;">|b1a12b2a22|
    }{
    |a11a12a21a22|" role="presentation" style="position: relative;">|a11a12a21a22|
    }, \hspace{1em} x_2 = \frac{D_2}{D} = \frac{
    |a11b1a21b2|" role="presentation" style="position: relative;">|a11b1a21b2|
    }{
    |a11a12a21a22|" role="presentation" style="position: relative;">|a11a12a21a22|
    } \tag{3}
    x1=DD1= a11a21a12a22 b1b2a12a22 ,x2=DD2= a11a21a12a22 a11a21b1b2 (3)

    式 (3) 中的 D D D 是由方程组的系数所确定的二阶行列式(称系数行列式); D 1 D_1 D1 是用常数项 b 1 , b 2 b_1,b_2 b1,b2 替换 D D D 中第 1 列的元素 a 11 , a 21 a_{11},a_{21} a11,a21 所得的二阶行列式; D 2 D_2 D2 是用常数项 b 1 , b 2 b_1,b_2 b1,b2 替换 D D D 中第 2 列的元素 a 21 , a 22 a_{21},a_{22} a21,a22 所得的二阶行列式。

  • 相关阅读:
    【BurpSuite】插件开发学习之J2EEScan(下)-主动扫描
    java-php-net-python-电信网上营业厅计算机毕业设计程序
    从React源码角度看useCallback,useMemo,useContext
    LFS学习系列1 — 初识
    设计HTML和JavaScript程序,实现客户端数据验证,并通过DOM方法获取表单中输出的数据
    网页自动点赞
    前端性能精进之优化方法论(二)——分析
    20231008-20231013 读书笔记
    Ubuntu系统下安装rpm安装包的方法
    c++中指针,堆栈内存分配重要概念理解汇总(实例注释)
  • 原文地址:https://blog.csdn.net/Changxing_J/article/details/126814856