给出算术编码实现的详细原理。
编制编解码程序
设计并实现自适应算术编码(选做)
硬件环境:windows 10; VScode
编程语言:python3.7
算术编码是图像压缩的主要算法之一。 是一种无损数据压缩方法,也是一种熵编码的方法。和其它熵编码方法不同的地方在于,其他的熵编码方法通常是把输入的消息分割为符号,然后对每个符号进行编码,而算术编码是直接把整个输入的消息编码为一个数,一个满足(0.0 ≤ n < 1.0)的小数n。
算术编码的基本原理: 根据信源可能发现的不同符号序列的概率,把[0,1]区间划分为互不重叠的子区间,子区间的宽度恰好是各符号序列的概率。这样信源发出的不同符号序列将与各子区间一一对应,因此每个子区间内的任意一个实数都可以用来表示对应的符号序列,这个数就是该符号序列所对应的码字。显然,一串符号序列发生的概率越大,对应的子区间就越宽,要表达它所用的比特数就减少,因而相应的码字就越短。
在给定符号集和符号概率的情况下,算术编码可以给出接近最优的编码结果。使用算术编码的压缩算法通常先要对输入符号的概率进行估计,然后再编码。这个估计越准,编码结果就越接近最优的结果。
编码过程:
编码器在开始时将“当前间隔” [ L, H) 设置为[0,1)。
对每一事件,编码器按步骤(a)和(b)进行处理
编码器将“当前间隔”分为子间隔,每一个事件一个。
个子间隔的大小与下一个将出现的事件的概率成比例,编码器选择子间隔对应于下一个确切发生的事件相对应,并使它成为新的“当前间隔”。
最后输出的“当前间隔”的下边界就是该给定事件序列的算术编码。
解码过程:解码前首先需要对区间[0,1)按照初始时的符号频度进行分割。然后观察输入的小数位于那个子区间。输出对应的符号,选择对应的子区间,然后从选择的子区间中继续进行下一轮的分割。不断的进行这个过程,直到所有的符号都解码出来。
程序演示截图:
