• L1W3 用1层隐藏层的神经网络分类二维数据


    用1层隐藏层的神经网络分类二维数据

    欢迎来到第3周的编程作业。 现在是时候建立你的第一个神经网络了,它将具有一层隐藏层。 你将看到此模型与你使用逻辑回归实现的模型之间的巨大差异。

    你将学到如何:

    • 实现具有单个隐藏层的2分类神经网络
    • 使用具有非线性激活函数的神经元,例如tanh
    • 计算交叉熵损失
    • 实现前向和后向传播

    1- 安装包

    让我们首先导入在作业过程中需要的所有软件包。

    • numpy是Python科学计算的基本包。
    • sklearn提供了用于数据挖掘和分析的简单有效的工具。
    • matplotlib 是在Python中常用的绘制图形的库。
    • testCases提供了一些测试示例用以评估函数的正确性
    • planar_utils提供了此作业中使用的各种函数

    In [2]:

    cd ../input/deeplearning24054
    /home/kesci/input/deeplearning24054
    
    • 1
    • 2

    In [3]:

    # Package imports
    import numpy as np
    import matplotlib.pyplot as plt
    from testCases import *
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    
    %matplotlib inline
    
    np.random.seed(1) # set a seed so that the results are consistent
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    2- 数据集

    首先,让我们获取处理的数据集。 以下代码会将“flower” 2分类数据集加载到变量 XY中。

    In [4]:

    X, Y = load_planar_dataset() 
    
    • 1

    使用matplotlib可视化数据集。 数据看起来像是带有一些红色(标签y = 0)和一些蓝色(y = 1)点的“花”。 我们的目标是建立一个适合该数据的分类模型。

    In [5]:

    # Visualize the data:
    plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0,:].shape), s=40, cmap=plt.cm.Spectral)
    
    • 1
    • 2

    Out[5]:

    <matplotlib.collections.PathCollection at 0x7f90e3ed0668>
    
    • 1

    img

    现在你有:
    - 包含特征(x1,x2)的numpy数组(矩阵)X
    - 包含标签(红色:0,蓝色:1)的numpy数组(向量)Y。

    首先让我们深入地了解一下我们的数据。

    练习:数据集中有多少个训练示例? 另外,变量“ X”和“ Y”的“shape”是什么?

    提示:如何获得numpy数组的shape维度? (help)

    In [4]:

    ### START CODE HERE ### (≈ 3 lines of code)
    shape_X = X.shape
    shape_Y = Y.shape
    
    m = shape_X[1]  # training set size
    ### END CODE HERE ###
    
    print ('The shape of X is: ' + str(shape_X))
    print ('The shape of Y is: ' + str(shape_Y))
    print ('I have m = %d training examples!' % (m))
    The shape of X is: (2, 400)
    The shape of Y is: (1, 400)
    I have m = 400 training examples!
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    预期输出:
    The shape of X is: (2, 400)
    The shape of Y is: (1, 400)
    I have m = 400 training examples!

    3- 简单Logistic回归

    在构建完整的神经网络之前,首先让我们看看逻辑回归在此问题上的表现。 你可以使用sklearn的内置函数来执行此操作。 运行以下代码以在数据集上训练逻辑回归分类器。

    In [5]:

    # Train the logistic regression classifier
    clf = sklearn.linear_model.LogisticRegressionCV();
    clf.fit(X.T, Y.T);
    /opt/conda/lib/python3.6/site-packages/sklearn/utils/validation.py:724: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
      y = column_or_1d(y, warn=True)
    /opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_split.py:1978: FutureWarning: The default value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to silence this warning.
      warnings.warn(CV_WARNING, FutureWarning)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    现在,你可以运行下面的代码以绘制此模型的决策边界:

    In [6]:

    # Plot the decision boundary for logistic regression
    plot_decision_boundary(lambda x: clf.predict(x), X, Y)
    plt.title("Logistic Regression")
    
    # Print accuracy
    LR_predictions = clf.predict(X.T)
    print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
           '% ' + "(percentage of correctly labelled datapoints)")
    Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    img

    预期输出:
    Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

    Interpretation: The dataset is not linearly separable, so logistic regression doesn’t perform well. Hopefully a neural network will do better. Let’s try this now!

    说明:由于数据集不是线性可分类的,因此逻辑回归效果不佳。 让我们试试是否神经网络会做得更好吧!

    4- 神经网络模型

    从上面我们可以得知Logistic回归不适用于“flower数据集”。现在你将训练带有单个隐藏层的神经网络。

    这是我们的模型:

    Image Name

    数学原理:

    例如 x ( i ) x^{(i)} x(i):

    z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) (1) z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}\tag{1} z[1](i)=W[1]x(i)+b[1](i)(1)

    a [ 1 ] ( i ) = tanh ⁡ ( z [ 1 ] ( i ) ) (2) a^{[1] (i)} = \tanh(z^{[1] (i)})\tag{2} a[1](i)=tanh(z[1](i))(2)

    z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) (3) z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}\tag{3} z[2](i)=W[2]a[1](i)+b[2](i)(3)

    y ^ ( i ) = a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) (4) \hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})\tag{4} y^(i)=a[2](i)=σ(z[2](i))(4)

    KaTeX parse error: Undefined control sequence: \mbox at position 43: …gin{cases} 1 & \̲m̲b̲o̲x̲{if } a^{[2](i)…

    根据所有的预测数据,你还可以如下计算损失J:

    J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (6) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(6)

    提示
    建立神经网络的一般方法是:
    1.定义神经网络结构(输入单元数,隐藏单元数等)。
    2.初始化模型的参数
    3.循环:

    • 实现前向传播
    • 计算损失
    • 后向传播以获得梯度
    • 更新参数(梯度下降)

    我们通常会构建辅助函数来计算第1-3步,然后将它们合并为nn_model()函数。一旦构建了nn_model()并学习了正确的参数,就可以对新数据进行预测。

    4.1- 定义神经网络结构

    练习:定义三个变量:
    - n_x:输入层的大小
    - n_h:隐藏层的大小(将其设置为4)
    - n_y:输出层的大小

    提示:使用shape来找到n_x和n_y。 另外,将隐藏层大小硬编码为4。

    In [7]:

    # GRADED FUNCTION: layer_sizes
    
    def layer_sizes(X, Y):
        """
        Arguments:
        X -- input dataset of shape (input size, number of examples)
        Y -- labels of shape (output size, number of examples)
        
        Returns:
        n_x -- the size of the input layer
        n_h -- the size of the hidden layer
        n_y -- the size of the output layer
        """
        ### START CODE HERE ### (≈ 3 lines of code)
        n_x = X.shape[0] # size of input layer
        n_h = 4
        n_y = Y.shape[0] # size of output layer
        ### END CODE HERE ###
        return (n_x, n_h, n_y)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    In [8]:

    X_assess, Y_assess = layer_sizes_test_case()
    (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
    print("The size of the input layer is: n_x = " + str(n_x))
    print("The size of the hidden layer is: n_h = " + str(n_h))
    print("The size of the output layer is: n_y = " + str(n_y))
    The size of the input layer is: n_x = 5
    The size of the hidden layer is: n_h = 4
    The size of the output layer is: n_y = 2
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    预期输出(仅用于评估刚刚编码的函数,并不代表实际网络大小)。
    输入层的大小为:n_x = 5
    隐藏层的大小为:n_h = 4
    输出层的大小为:n_y = 2

    4.2- 初始化模型的参数

    练习:实现函数 initialize_parameters()

    说明

    • 请确保参数大小正确。 如果需要,也可参考上面的神经网络图。
    • 使用随机值初始化权重矩阵。
      - 使用:np.random.randn(a,b)* 0.01随机初始化维度为(a,b)的矩阵。
    • 将偏差向量初始化为零。
      - 使用:np.zeros((a,b)) 初始化维度为(a,b)零的矩阵。

    In [9]:

    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        params -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
        
        np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
        
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h,n_x) * 0.01
        b1 = np.zeros((n_h,1))
        W2 = np.random.randn(n_y,n_h) * 0.01
        b2 = np.zeros((n_y,1))
        ### END CODE HERE ###
        
        assert (W1.shape == (n_h, n_x))
        assert (b1.shape == (n_h, 1))
        assert (W2.shape == (n_y, n_h))
        assert (b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37

    In [10]:

    n_x, n_h, n_y = initialize_parameters_test_case()
    
    parameters = initialize_parameters(n_x, n_h, n_y)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    W1 = [[-0.00416758 -0.00056267]
     [-0.02136196  0.01640271]
     [-0.01793436 -0.00841747]
     [ 0.00502881 -0.01245288]]
    b1 = [[0.]
     [0.]
     [0.]
     [0.]]
    W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
    b2 = [[0.]]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    预期输出:
    W1 = [[-0.00416758 -0.00056267]
    [-0.02136196 0.01640271]
    [-0.01793436 -0.00841747]
    [ 0.00502881 -0.01245288]]
    b1 = [[0.]
    [0.]
    [0.]
    [0.]]
    W2 = [[-0.01057952 -0.00909008 0.00551454 0.02292208]]
    b2 = [[0.]]

    4.3- 循环

    问题:实现forward_propagation()

    说明

    • 在上方查看分类器的数学表示形式。
    • 你可以使用内置在笔记本中的sigmoid()函数。
    • 你也可以使用numpy库中的np.tanh()函数。
    • 必须执行以下步骤:
      1.使用parameters [“ ..”]从字典“ parameters”(这是initialize_parameters()的输出)中检索出每个参数。
      2.实现正向传播,计算Z[1],A[1],Z[2] 和 A[2] (所有训练数据的预测结果向量)。
    • 向后传播所需的值存储在cache中, cache将作为反向传播函数的输入。

    In [11]:

    # GRADED FUNCTION: forward_propagation
    
    def forward_propagation(X, parameters):
        """
        Argument:
        X -- input data of size (n_x, m)
        parameters -- python dictionary containing your parameters (output of initialization function)
        
        Returns:
        A2 -- The sigmoid output of the second activation
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        ### END CODE HERE ###
        
        # Implement Forward Propagation to calculate A2 (probabilities)
        ### START CODE HERE ### (≈ 4 lines of code)
        Z1 = np.dot(W1,X) + b1
        A1 = np.tanh(Z1)
        Z2 = np.dot(W2,A1) + b2
        A2 = sigmoid(Z2)
        ### END CODE HERE ###
        
        assert(A2.shape == (1, X.shape[1]))
        
        cache = {"Z1": Z1,
                 "A1": A1,
                 "Z2": Z2,
                 "A2": A2}
        
        return A2, cache
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    In [12]:

    X_assess, parameters = forward_propagation_test_case()
    
    A2, cache = forward_propagation(X_assess, parameters)
    
    # Note: we use the mean here just to make sure that your output matches ours. 
    print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
    -0.0004997557777419913 -0.000496963353231779 0.00043818745095914653 0.500109546852431
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    预期输出:
    -0.0004997557777419913 -0.000496963353231779 0.00043818745095914653 0.500109546852431

    现在,你已经计算了包含每个示例的a2 的 A[2] (在Python变量“A2”中),其中,你可以计算损失函数 如下:

    J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (13) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large{(} \small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large{)} \small\tag{13} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(13)

    练习:实现compute_cost()以计算损失J的值。

    说明

    • 有很多种方法可以实现交叉熵损失。 我们为你提供了实现方法:

    − ∑ i = 0 m y ( i ) log ⁡ ( a [ 2 ] ( i ) ) -\sum\limits_{i=0}^{m} y^{(i)}\log(a^{[2](i)}) i=0my(i)log(a[2](i))
    :

    logprobs = np.multiply(np.log(A2),Y)  
    cost = - np.sum(logprobs)                # no need to use a for loop!
    
    • 1
    • 2

    (你也可以使用np.multiply()然后使用np.sum()或直接使用np.dot())。

    In [13]:

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(A2, Y, parameters):
        """
        Computes the cross-entropy cost given in equation (13)
        
        Arguments:
        A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        parameters -- python dictionary containing your parameters W1, b1, W2 and b2
        
        Returns:
        cost -- cross-entropy cost given equation (13)
        """
        
        m = Y.shape[1] # number of example
    
        # Compute the cross-entropy cost
         ### START CODE HERE ### (≈ 2 lines of code)
        logprobs = Y*np.log(A2) + (1-Y)* np.log(1-A2)
        cost = -1/m * np.sum(logprobs)
        ### END CODE HERE ###
        
        cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                    # E.g., turns [[17]] into 17 
        assert(isinstance(cost, float))
        
        return cost
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    In [14]:

    A2, Y_assess, parameters = compute_cost_test_case()
    
    print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
    cost = 0.6929198937761265
    
    • 1
    • 2
    • 3
    • 4

    预期输出:
    cost = 0.6929198937761265

    现在,通过使用在正向传播期间计算的缓存,你可以实现后向传播。

    问题:实现函数backward_propagation()

    说明
    反向传播通常是深度学习中最难(最数学)的部分。为了帮助你更好地了解,我们提供了反向传播课程的幻灯片。你将要使用此幻灯片右侧的六个方程式以构建向量化实现。

    Image Name

    ∂ J ∂ z 2 ( i ) = 1 m ( a [ 2 ] ( i ) − y ( i ) ) \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } = \frac{1}{m} (a^{[2](i)} - y^{(i)}) z2(i)J=m1(a[2](i)y(i))

    ∂ J ∂ W 2 = ∂ J ∂ z 2 ( i ) a [ 1 ] ( i ) T \frac{\partial \mathcal{J} }{ \partial W_2 } = \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)}} a^{[1](i)T} W2J=z2(i)Ja[1](i)T
    ∂ J ∂ b 2 = ∑ i ∂ J ∂ z 2 ( i ) \frac{\partial \mathcal{J} }{ \partial b_2 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)}}} b2J=iz2(i)J

    ∂ J ∂ z 1 ( i ) = W 2 T ∂ J ∂ z 2 ( i ) ∗ ( 1 − a [ 1 ] ( i ) 2 ) \frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } = W_2^T \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } * ( 1 - a^{[1](i)2}) z1(i)J=W2Tz2(i)J(1a[1](i)2)
    ∂ J ∂ W 1 = ∂ J ∂ z 1 ( i ) X T \frac{\partial \mathcal{J} }{ \partial W_1 } = \frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)}} X^T W1J=z1(i)JXT
    ∂ J i ∂ b 1 = ∑ i ∂ J ∂ z 1 ( i ) \frac{\partial \mathcal{J} _i }{ \partial b_1 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)}}} b1Ji=iz1(i)J

    • 请注意,∗ 表示元素乘法。
    • 你将使用在深度学习中很常见的编码表示方法:
      • dW1 = ∂ J ∂ W 1 \frac{\partial \mathcal{J} }{ \partial W_1 } W1J
      • db1 = ∂ J ∂ b 1 \frac{\partial \mathcal{J} }{ \partial b_1 } b1J
      • dW2 = ∂ J ∂ W 2 \frac{\partial \mathcal{J} }{ \partial W_2 } W2J
      • db2 = ∂ J ∂ b 2 \frac{\partial \mathcal{J} }{ \partial b_2 } b2J
    • 提示:
      -要计算dZ1,你首先需要计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1](Z[1])。由于 g [ 1 ] ( . ) g^{[1]}(.) g[1](.) 是tanh激活函数,因此如果 a = g [ 1 ] ( z ) a = g^{[1]}(z) a=g[1](z) g [ 1 ] ′ ( z ) = 1 − a 2 g^{[1]'}(z) = 1-a^2 g[1](z)=1a2。所以你可以使用(1 - np.power(A1, 2))计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1](Z[1])

    In [15]:

    # GRADED FUNCTION: backward_propagation
    
    def backward_propagation(parameters, cache, X, Y):
        """
        Implement the backward propagation using the instructions above.
        
        Arguments:
        parameters -- python dictionary containing our parameters 
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
        X -- input data of shape (2, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        
        Returns:
        grads -- python dictionary containing your gradients with respect to different parameters
        """
        m = X.shape[1]
        
        # First, retrieve W1 and W2 from the dictionary "parameters".
        ### START CODE HERE ### (≈ 2 lines of code)
        W1 = parameters["W1"]
        W2 = parameters["W2"]
        ### END CODE HERE ###
            
        # Retrieve also A1 and A2 from dictionary "cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        A1 = cache["A1"]
        A2 = cache["A2"]
        ### END CODE HERE ###
        
        # Backward propagation: calculate dW1, db1, dW2, db2. 
        ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
        dZ2= A2 - Y
        dW2 = 1 / m * np.dot(dZ2,A1.T)
        db2 = 1 / m * np.sum(dZ2,axis=1,keepdims=True)
        dZ1 = np.dot(W2.T,dZ2) * (1-np.power(A1,2))
        dW1 = 1 / m * np.dot(dZ1,X.T)
        db1 = 1 / m * np.sum(dZ1,axis=1,keepdims=True)
        ### END CODE HERE ###
        
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
        
        return grads
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45

    In [16]:

    parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
    
    grads = backward_propagation(parameters, cache, X_assess, Y_assess)
    print ("dW1 = "+ str(grads["dW1"]))
    print ("db1 = "+ str(grads["db1"]))
    print ("dW2 = "+ str(grads["dW2"]))
    print ("db2 = "+ str(grads["db2"]))
    dW1 = [[ 0.01018708 -0.00708701]
     [ 0.00873447 -0.0060768 ]
     [-0.00530847  0.00369379]
     [-0.02206365  0.01535126]]
    db1 = [[-0.00069728]
     [-0.00060606]
     [ 0.000364  ]
     [ 0.00151207]]
    dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]
    db2 = [[0.06589489]]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    预期输出:
    dW1 = [[ 0.01018708 -0.00708701]
    [ 0.00873447 -0.0060768 ]
    [-0.00530847 0.00369379]
    [-0.02206365 0.01535126]]
    db1 = [[-0.00069728]
    [-0.00060606]
    [ 0.000364 ]
    [ 0.00151207]]
    dW2 = [[ 0.00363613 0.03153604 0.01162914 -0.01318316]]
    db2 = [[0.06589489]]

    问题:实现参数更新。 使用梯度下降,你必须使用(dW1,db1,dW2,db2)才能更新(W1,b1,W2,b2)。

    一般的梯度下降规则 θ = θ − α ∂ J ∂ θ \theta = \theta - \alpha \frac{\partial J }{ \partial \theta } θ=θαθJ其中α是学习率,而θ 代表一个参数。

    图示:具有良好的学习速率(收敛)和较差的学习速率(发散)的梯度下降算法。 图片由Adam Harley提供。

    Image Name

    Image Name

    In [17]:

    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate = 1.2):
        """
        Updates parameters using the gradient descent update rule given above
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients 
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        ### END CODE HERE ###
        
        # Retrieve each gradient from the dictionary "grads"
        ### START CODE HERE ### (≈ 4 lines of code)
        dW1 = grads["dW1"]
        db1 = grads["db1"]
        dW2 = grads["dW2"]
        db2 = grads["db2"]
        ## END CODE HERE ###
        
        # Update rule for each parameter
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = W1 - learning_rate * dW1
        b1 = b1 - learning_rate * db1
        W2 = W2 - learning_rate * dW2
        b2 = b2 - learning_rate * db2
        ### END CODE HERE ###
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43

    In [18]:

    parameters, grads = update_parameters_test_case()
    parameters = update_parameters(parameters, grads)
    
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    W1 = [[-0.00643025  0.01936718]
     [-0.02410458  0.03978052]
     [-0.01653973 -0.02096177]
     [ 0.01046864 -0.05990141]]
    b1 = [[-1.02420756e-06]
     [ 1.27373948e-05]
     [ 8.32996807e-07]
     [-3.20136836e-06]]
    W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
    b2 = [[0.00010457]]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    预期输出:
    dW1 = [[ 0.01018708 -0.00708701]
    [ 0.00873447 -0.0060768 ]
    [-0.00530847 0.00369379]
    [-0.02206365 0.01535126]]
    db1 = [[-0.00069728]
    [-0.00060606]
    [ 0.000364 ]
    [ 0.00151207]]
    dW2 = [[ 0.00363613 0.03153604 0.01162914 -0.01318316]]
    db2 = [[0.06589489]]

    4.4- 在nn_model()中集成4.1、4.2和4.3部分中的函数

    问题:在nn_model()中建立你的神经网络模型。

    说明:神经网络模型必须以正确的顺序组合先前构建的函数。

    In [19]:

    # GRADED FUNCTION: nn_model
    
    def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
        """
        Arguments:
        X -- dataset of shape (2, number of examples)
        Y -- labels of shape (1, number of examples)
        n_h -- size of the hidden layer
        num_iterations -- Number of iterations in gradient descent loop
        print_cost -- if True, print the cost every 1000 iterations
        
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        np.random.seed(3)
        n_x = layer_sizes(X, Y)[0]
        n_y = layer_sizes(X, Y)[2]
        
        # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
        ### START CODE HERE ### (≈ 5 lines of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        ### END CODE HERE ###
        
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
             
            ### START CODE HERE ### (≈ 4 lines of code)
            # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
            A2, cache = forward_propagation(X, parameters)
            
            # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
            cost = compute_cost(A2, Y, parameters)
     
            # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
            grads = backward_propagation(parameters, cache, X, Y)
     
            # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
            parameters = update_parameters(parameters, grads)
            
            ### END CODE HERE ###
            
            # Print the cost every 1000 iterations
            if print_cost and i % 1000 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
    
        return parameters
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52

    In [20]:

    X_assess, Y_assess = nn_model_test_case()
    
    parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    /opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:20: RuntimeWarning: divide by zero encountered in log
    /home/kesci/work/planar_utils.py:34: RuntimeWarning: overflow encountered in exp
      s = 1/(1+np.exp(-x))
    W1 = [[-4.18503197  5.33214315]
     [-7.52988635  1.24306559]
     [-4.19302427  5.32627154]
     [ 7.52984762 -1.24308746]]
    b1 = [[ 2.32926944]
     [ 3.79460252]
     [ 2.33002498]
     [-3.79466751]]
    W2 = [[-6033.83668723 -6008.12983227 -6033.10091631  6008.06624417]]
    b2 = [[-52.66610924]]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    预期输出:
    W1 = [[-4.18503197 5.33214315]
    [-7.52988635 1.24306559]
    [-4.19302427 5.32627154]
    [ 7.52984762 -1.24308746]]
    b1 = [[ 2.32926944]
    [ 3.79460252]
    [ 2.33002498]
    [-3.79466751]]
    W2 = [[-6033.83668723 -6008.12983227 -6033.10091631 6008.06624417]]
    b2 = [[-52.66610924]]

    4.5- 预测

    问题:使用你的模型通过构建predict()函数进行预测。
    使用正向传播来预测结果。

    提示 y p r e d i c t i o n = 1 activation > 0.5 = { 1 if  a c t i v a t i o n > 0.5 0 otherwise y_{prediction} = \mathbb 1 \text{{activation > 0.5}} =

    {1if activation>0.50otherwise" role="presentation" style="position: relative;">{1if activation>0.50otherwise
    yprediction=1activation > 0.5={10if activation>0.5otherwise

    例如,如果你想基于阈值将矩阵X设为0和1,则可以执行以下操作: X_new = (X > threshold)

    In [21]:

    # GRADED FUNCTION: predict
    
    def predict(parameters, X):
        """
        Using the learned parameters, predicts a class for each example in X
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        X -- input data of size (n_x, m)
        
        Returns
        predictions -- vector of predictions of our model (red: 0 / blue: 1)
        """
        
        # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
      ### START CODE HERE ### (≈ 2 lines of code)
        A2, cache = forward_propagation(X, parameters)
        predictions = np.round(A2)
        ### END CODE HERE ###
        
        return predictions
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    In [22]:

    parameters, X_assess = predict_test_case()
    
    predictions = predict(parameters, X_assess)
    print("predictions mean = " + str(np.mean(predictions)))
    predictions mean = 0.6666666666666666
    
    • 1
    • 2
    • 3
    • 4
    • 5

    预期输出:
    predictions mean = 0.6666666666666666

    现在运行模型以查看其如何在二维数据集上运行。 运行以下代码以使用含有nh隐藏单元的单个隐藏层测试模型。

    In [23]:

    # Build a model with a n_h-dimensional hidden layer
    parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
    
    # Plot the decision boundary
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    plt.title("Decision Boundary for hidden layer size " + str(4))
    Cost after iteration 0: 0.693048
    Cost after iteration 1000: 0.288083
    Cost after iteration 2000: 0.254385
    Cost after iteration 3000: 0.233864
    Cost after iteration 4000: 0.226792
    Cost after iteration 5000: 0.222644
    Cost after iteration 6000: 0.219731
    Cost after iteration 7000: 0.217504
    Cost after iteration 8000: 0.219467
    Cost after iteration 9000: 0.218561
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    Out[23]:

    Text(0.5, 1.0, 'Decision Boundary for hidden layer size 4')
    
    • 1

    img

    预期输出:
    Cost after iteration 9000: 0.218561

    In [24]:

    # Print accuracy
    predictions = predict(parameters, X)
    print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
    Accuracy: 90%
    
    • 1
    • 2
    • 3
    • 4

    预期输出:
    Accuracy: 90%

    与Logistic回归相比,准确性确实更高。 该模型学习了flower的叶子图案! 与逻辑回归不同,神经网络甚至能够学习非线性的决策边界。

    现在,让我们尝试几种不同的隐藏层大小。

    4.6- 调整隐藏层大小(可选练习)

    运行以下代码(可能需要1-2分钟), 你将观察到不同大小隐藏层的模型的不同表现。

    In [25]:

    # This may take about 2 minutes to run
    
    plt.figure(figsize=(16, 32))
    hidden_layer_sizes = [1, 2, 3, 4, 5, 10, 20]
    for i, n_h in enumerate(hidden_layer_sizes):
        plt.subplot(5, 2, i+1)
        plt.title('Hidden Layer of size %d' % n_h)
        parameters = nn_model(X, Y, n_h, num_iterations = 5000)
        plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
        predictions = predict(parameters, X)
        accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
        print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
    Accuracy for 1 hidden units: 67.5 %
    Accuracy for 2 hidden units: 67.25 %
    Accuracy for 3 hidden units: 90.75 %
    Accuracy for 4 hidden units: 90.5 %
    Accuracy for 5 hidden units: 91.25 %
    Accuracy for 10 hidden units: 90.25 %
    Accuracy for 20 hidden units: 90.5 %
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    img

    说明

    • 较大的模型(具有更多隐藏的单元)能够更好地拟合训练集,直到最终最大的模型过拟合数据为止。
    • 隐藏层的最佳大小似乎在n_h = 5左右。的确,此值似乎很好地拟合了数据,而又不会引起明显的过度拟合。
    • 稍后你还将学习正则化,帮助构建更大的模型(例如n_h = 50)而不会过度拟合。

    可选问题

    注意:请单击右上角的"Submit Assignment"蓝色按钮以提交作业。

    如果你愿意,可以探索一些可选的问题:

    • 将tanh激活函数更改为sigmoid或ReLU会发生什么?
    • 调整学习率会发生什么?
    • 如果我们更改数据集该怎么办? (请参阅下面的第5部分!)

    你学习了以下几点:

    • 建立具有隐藏层的完整神经网络
    • 善用非线性单位
    • 实现正向传播和反向传播,并训练神经网络
    • 了解不同隐藏层大小(包括过度拟合)的影响。

    5- 模型在其他数据集上的性能

    如果需要,可以为以下每个数据集重新运行整个笔记本(除去数据集部分)。

    In [27]:

    # Datasets
    noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()
    
    datasets = {"noisy_circles": noisy_circles,
                "noisy_moons": noisy_moons,
                "blobs": blobs,
                "gaussian_quantiles": gaussian_quantiles}
    
    ### START CODE HERE ### (choose your dataset)
    dataset = "gaussian_quantiles"
    ### END CODE HERE ###
    
    X, Y = datasets[dataset]
    X, Y = X.T, Y.reshape(1, Y.shape[0])
    
    # make blobs binary
    if dataset == "blobs":
        Y = Y%2
    
    # Visualize the data
    plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0,:].shape), s=40, cmap=plt.cm.Spectral);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    [外链图片转存中...(img-clk2FMrW-1662728706538)]

    恭喜你完成了此编程作业!

    参考:

    • http://scs.ryerson.ca/~aharley/neural-networks/
    • http://cs231n.github.io/neural-networks-case-study/
  • 相关阅读:
    NAND存储器转储分析 - 使用ECC修复位错误与UBI镜像固件分析
    [JavaScript]面对对象编程,构造函数,原型
    WEB渗透Bypass篇-常规操作
    Windows重定向技术【文件重定向与注册表重定向】
    Camera2开发基础知识篇——手机影像参数
    第十一章 Windows特权升级
    HMS Core热门Kit Top问题合集,你要问的,这里全都有!
    nginx的GeoIP模块
    JMeter+influxdb+grafana性能测试监控平台
    C语言冒泡排序
  • 原文地址:https://blog.csdn.net/segegse/article/details/126789208