• 自动控制原理9.1---线性系统的状态空间描述(中下)


    参考书籍:《自动控制原理》(第七版).胡寿松主编.
    《自动控制原理PDF版下载》



    1.线性系统的状态空间描述
    1.4 线性定常连续系统状态方程的解
    1. 齐次状态方程的解

      状态方程为:
      x ˙ ( t ) = A x ( t ) (41) \dot{x}(t)=Ax(t)\tag{41} x˙(t)=Ax(t)(41)
      式(41)称为齐次状态方程,通常采用幂级数法和拉普拉斯变换法求解;

      1. 幂级数法

        设齐次状态方程的解是 t t t的向量幂级数,
        x ( t ) = b 0 + b 1 t + b 2 t 2 + ⋯ + b k t k + ⋯ + (42) x(t)=b_0+b_1t+b_2t^2+\dots+b_kt^k+\dots+\tag{42} x(t)=b0+b1t+b2t2++bktk++(42)
        式中, x , b 0 , b 1 , … , b k , … x,b_0,b_1,\dots,b_k,\dots x,b0,b1,,bk,都是 n n n维向量;
        x ˙ ( t ) = b 1 + 2 b 2 t + ⋯ + k b k t k − 1 + ⋯ = A ( b 0 + b 1 t + b 2 t 2 + ⋯ + b k t k + …   ) (43) \dot{x}(t)=b_1+2b_2t+\dots+kb_kt^{k-1}+\dots=A(b_0+b_1t+b_2t^2+\dots+b_kt^k+\dots)\tag{43} x˙(t)=b1+2b2t++kbktk1+=A(b0+b1t+b2t2++bktk+)(43)
        可得:
        x ( t ) = ( I + A t + 1 2 A 2 t 2 + ⋯ + 1 k ! A k t k + ⋯ + ) x ( 0 ) (44) x(t)=\left(I+At+\frac{1}{2}A^2t^2+\dots+\frac{1}{k!}A^kt^k+\dots+\right)x(0)\tag{44} x(t)=(I+At+21A2t2++k!1Aktk++)x(0)(44)
        定义:
        e A t = I + A t + 1 2 A 2 t 2 + ⋯ + 1 k ! A k t k + ⋯ + = ∑ k = 0 ∞ 1 k ! A k t k (45) e^{At}=I+At+\frac{1}{2}A^2t^2+\dots+\frac{1}{k!}A^kt^k+\dots+=\sum_{k=0}^\infty\frac{1}{k!}A^kt^k\tag{45} eAt=I+At+21A2t2++k!1Aktk++=k=0k!1Aktk(45)
        则有:
        x ( t ) = e A t x ( 0 ) (46) x(t)=e^{At}x(0)\tag{46} x(t)=eAtx(0)(46)
        标量微分方程 x ˙ = a x \dot{x}=ax x˙=ax的解为: x ( t ) = e a t x ( 0 ) , e a t x(t)=e^{at}x(0),e^{at} x(t)=eatx(0)eat称为指数函数,向量微分方程具有相似形式的解,故把 e A t e^{At} eAt称为矩阵指数函数,简称矩阵指数;由于 x ( t ) x(t) x(t) x ( 0 ) x(0) x(0)转移而来,对于线性定常系统, e A t e^{At} eAt亦称状态转移矩阵,记为 Φ ( t ) \Phi(t) Φ(t),即:
        Φ ( t ) = e A t (47) \Phi(t)=e^{At}\tag{47} Φ(t)=eAt(47)

      2. 拉普拉斯变换法

        状态方程:
        x ˙ ( t ) = A x ( t ) \dot{x}(t)=Ax(t) x˙(t)=Ax(t)
        将上式进行拉氏变换,
        s X ( s ) = A X ( s ) + x ( 0 ) (48) sX(s)=AX(s)+x(0)\tag{48} sX(s)=AX(s)+x(0)(48)
        则有:
        X ( s ) = ( s I − A ) − 1 x ( 0 ) (49) X(s)=(sI-A)^{-1}x(0)\tag{49} X(s)=(sIA)1x(0)(49)
        进行拉氏反变换:
        x ( t ) = L − 1 [ ( s I − A ) − 1 ] x ( 0 ) (50) x(t)=L^{-1}\left[(sI-A)^{-1}\right]x(0)\tag{50} x(t)=L1[(sIA)1]x(0)(50)
        式(46)和式(50)比较:
        e A t = L − 1 [ ( s I − A ) − 1 ] e^{At}=L^{-1}\left[(sI-A)^{-1}\right] eAt=L1[(sIA)1]

    2. 状态转移矩阵的运算性质

      状态转移矩阵 Φ ( t ) \Phi(t) Φ(t)的幂级数展开式:
      Φ ( t ) = e A t = I + A t + 1 2 A 2 t 2 + ⋯ + 1 k ! A k t k + … (51) \Phi(t)=e^{At}=I+At+\frac{1}{2}A^2t^2+\dots+\frac{1}{k!}A^kt^k+\dots\tag{51} Φ(t)=eAt=I+At+21A2t2++k!1Aktk+(51)

      1. Φ ( 0 ) = I \Phi(0)=I Φ(0)=I

      2. Φ ˙ ( t ) = A Φ ( t ) = Φ ( t ) A \dot{\Phi}(t)=A\Phi(t)=\Phi(t)A Φ˙(t)=AΦ(t)=Φ(t)A

      3. Φ ( t 1 ± t 2 ) = Φ ( t 1 ) Φ ( ± t 2 ) = Φ ( ± t 2 ) Φ ( t 1 ) \Phi(t_1±t_2)=\Phi(t_1)\Phi(±t_2)=\Phi(±t_2)\Phi(t_1) Φ(t1±t2)=Φ(t1)Φ(±t2)=Φ(±t2)Φ(t1)

      4. Φ − 1 ( t ) = Φ ( − t ) , Φ − 1 ( − t ) = Φ ( t ) \Phi^{-1}(t)=\Phi(-t),\Phi^{-1}(-t)=\Phi(t) Φ1(t)=Φ(t),Φ1(t)=Φ(t)

      5. x ( t 2 ) = Φ ( t 2 − t 1 ) x ( t 1 ) x(t_2)=\Phi(t_2-t_1)x(t_1) x(t2)=Φ(t2t1)x(t1)

      6. Φ ( t 2 − t 0 ) = Φ ( t 2 − t 1 ) Φ ( t 1 − t 0 ) \Phi(t_2-t_0)=\Phi(t_2-t_1)\Phi(t_1-t_0) Φ(t2t0)=Φ(t2t1)Φ(t1t0)

      7. [ Φ ( t ) ] k = Φ ( k t ) [\Phi(t)]^k=\Phi(kt) [Φ(t)]k=Φ(kt)

      8. Φ ( t ) \Phi(t) Φ(t) x ˙ ( t ) = A x ( t ) \dot{x}(t)=Ax(t) x˙(t)=Ax(t)的状态转移矩阵,则引入非奇异变换 x = P x ‾ x=P\overline{x} x=Px后的状态转移矩阵为: Φ ‾ ( t ) = P − 1 e A t P \overline{\Phi}(t)=P^{-1}e^{At}P Φ(t)=P1eAtP

      9. 两种常见的状态转移矩阵;设 A = d i a g [ λ 1 , λ 2 , … , λ n ] A=diag[\lambda_1,\lambda_2,\dots,\lambda_n] A=diag[λ1,λ2,,λn],即 A A A为对角阵,且具有互异元素,则:
        Φ ( t ) = [ e λ 1 t e λ 2 t ⋱ e λ n t ] (52) \Phi(t)= [eλ1teλ2teλnt]\tag{52} Φ(t)= eλ1teλ2teλnt (52)
        A A A阵为 m × m m\times{m} m×m约当阵:
        A = [ λ 1 λ ⋱ ⋱ 1 λ ] (53) A= [λ1λ1λ]\tag{53} A= λ1λ1λ (53)
        则:
        Φ ( t ) = [ e λ t t e λ t t 2 2 e λ t ⋯ t m − 1 ( m − 1 ) ! e λ t 0 e λ t t e λ t ⋯ t m − 2 ( m − 2 ) ! e λ t ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ t e λ t 0 0 0 ⋯ e λ t ] (54) \Phi(t)= [eλtteλtt22eλttm1(m1)!eλt0eλtteλttm2(m2)!eλt000teλt000eλt]\tag{54} Φ(t)= eλt000teλteλt002t2eλtteλt00(m1)!tm1eλt(m2)!tm2eλtteλteλt (54)
        实例分析:

        Example4: 设状态方程为:
        [ x ˙ 1 ( t ) x ˙ 2 ( t ) ] = [ 0 1 − 2 − 3 ] [ x 1 ( t ) x 2 ( t ) ] [˙x1(t)˙x2(t)]= [0123] [x1(t)x2(t)] [x˙1(t)x˙2(t)]=[0213][x1(t)x2(t)]
        求状态方程的解.

        解:

        用拉氏变换求解:
        s I − A = [ s 0 0 s ] − [ 0 1 − 2 − 3 ] = [ s − 1 2 s + 3 ] sI-A= [s00s]- [0123]= [s12s+3] sIA=[s00s][0213]=[s21s+3]

        ( s I − A ) − 1 = a d j ( s I − A ) ∣ s I − A ∣ = 1 ( s + 1 ) ( s + 2 ) [ s + 3 1 − 2 s ] = [ 2 s + 1 − 1 s + 2 1 s + 1 − 1 s + 2 − 2 s + 1 + 2 s + 2 − 1 s + 1 + 2 s + 2 ] (sIA)1=adj(sIA)|sIA|=1(s+1)(s+2)[s+312s]=[2s+11s+21s+11s+22s+1+2s+21s+1+2s+2] (sIA)1=sIAadj(sIA)=(s+1)(s+2)1[s+321s]= s+12s+21s+12+s+22s+11s+21s+11+s+22

        可得:
        Φ ( t ) = L − 1 [ ( s I − A ) − 1 ] = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] \Phi(t)=L^{-1}\left[(sI-A)^{-1}\right]= [2ete2tete2t2et+2e2tet+2e2t] Φ(t)=L1[(sIA)1]=[2ete2t2et+2e2tete2tet+2e2t]
        状态方程的解为:
        [ x 1 ( t ) x 2 ( t ) ] = Φ ( t ) [ x 1 ( 0 ) x 2 ( 0 ) ] = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] [ x 1 ( 0 ) x 2 ( 0 ) ] [x1(t)x2(t)]= \Phi(t)[x1(0)x2(0)]= [2ete2tete2t2et+2e2tet+2e2t] [x1(0)x2(0)] [x1(t)x2(t)]=Φ(t)[x1(0)x2(0)]=[2ete2t2et+2e2tete2tet+2e2t][x1(0)x2(0)]

    3. 非齐次状态方程的解

      非齐次状态方程如下:
      x ˙ ( t ) = A x ( t ) + B u ( t ) (55) \dot{x}(t)=Ax(t)+Bu(t)\tag{55} x˙(t)=Ax(t)+Bu(t)(55)
      方程的解为:
      x ( t ) = Φ ( t ) x ( 0 ) + ∫ 0 t Φ ( t − τ ) B u ( τ ) d τ (56) x(t)=\Phi(t)x(0)+\int_0^t\Phi(t-\tau)Bu(\tau)d\tau\tag{56} x(t)=Φ(t)x(0)+0tΦ(tτ)Bu(τ)dτ(56)
      式中第一项是对初始状态的响应,第二项是对输入作用的响应;

      亦可表示为:
      x ( t ) = Φ ( t ) x ( 0 ) + ∫ 0 t Φ ( τ ) B u ( t − τ ) d τ (57) x(t)=\Phi(t)x(0)+\int_{0}^t\Phi(\tau)Bu(t-\tau)d\tau\tag{57} x(t)=Φ(t)x(0)+0tΦ(τ)Bu(tτ)dτ(57)
      实例分析:

      Example5: 系统状态方程为:
      [ x ˙ 1 x ˙ 2 ] = [ 0 1 − 2 − 3 ] [ x 1 x 2 ] + [ 0 1 ] u [˙x1˙x2]= [0123] [x1x2]+ [01]u [x˙1x˙2]=[0213][x1x2]+[01]u
      x ( 0 ) = [ x 1 ( 0 ) x 2 ( 0 ) ] T x(0)=[x1(0)x2(0)]^T x(0)=[x1(0)x2(0)]T;求在 u ( t ) = 1 ( t ) u(t)=1(t) u(t)=1(t)作用下状态方程的解;

      解:

      由于: u ( t ) = 1 , u ( t − τ ) = 1 u(t)=1,u(t-\tau)=1 u(t)=1,u(tτ)=1,可得:
      x ( t ) = Φ ( t ) x ( 0 ) + ∫ 0 t Φ ( t ) B d τ x(t)=\Phi(t)x(0)+\int_{0}^t\Phi(t)Bd\tau x(t)=Φ(t)x(0)+0tΦ(t)Bdτ

      s I − A = [ s 0 0 s ] − [ 0 1 − 2 − 3 ] = [ s − 1 2 s + 3 ] sI-A= [s00s]- [0123]= [s12s+3] sIA=[s00s][0213]=[s21s+3]

      ( s I − A ) − 1 = a d j ( s I − A ) ∣ s I − A ∣ = 1 ( s + 1 ) ( s + 2 ) [ s + 3 1 − 2 s ] = [ 2 s + 1 − 1 s + 2 1 s + 1 − 1 s + 2 − 2 s + 1 + 2 s + 2 − 1 s + 1 + 2 s + 2 ] (sIA)1=adj(sIA)|sIA|=1(s+1)(s+2)[s+312s]=[2s+11s+21s+11s+22s+1+2s+21s+1+2s+2] (sIA)1=sIAadj(sIA)=(s+1)(s+2)1[s+321s]= s+12s+21s+12+s+22s+11s+21s+11+s+22

      Φ ( t ) = L − 1 [ ( s I − A ) − 1 ] = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] \Phi(t)=L^{-1}\left[(sI-A)^{-1}\right]= [2ete2tete2t2et+2e2tet+2e2t] Φ(t)=L1[(sIA)1]=[2ete2t2et+2e2tete2tet+2e2t]

      ∫ 0 t Φ ( τ ) B d τ = ∫ 0 t [ e − τ − e − 2 τ − e − τ + 2 e − 2 τ ] d τ = [ − e − τ + 1 2 e − 2 τ e − τ − e − 2 τ ] ∣ 0 t = [ − e − t + 1 2 e − 2 t + 1 2 e − t − e − 2 t ] \int_0^t\Phi(\tau)Bd\tau=\int_0^t [eτe2τeτ+2e2τ]d\tau= \left.[eτ+12e2τeτe2τ]\right|_0^t= [et+12e2t+12ete2t] 0tΦ(τ)Bdτ=0t[eτe2τeτ+2e2τ]dτ=[eτ+21e2τeτe2τ] 0t=[et+21e2t+21ete2t]

      因此:
      x ( t ) = [ x 1 ( t ) x 2 ( t ) ] = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] [ x 1 ( 0 ) x 2 ( 0 ) ] + [ − e − t + 1 2 e − 2 t + 1 2 e − t − e − 2 t ] x(t)= [x1(t)x2(t)]= [2ete2tete2t2et+2e2tet+2e2t] [x1(0)x2(0)]+ [et+12e2t+12ete2t] x(t)=[x1(t)x2(t)]=[2ete2t2et+2e2tete2tet+2e2t][x1(0)x2(0)]+[et+21e2t+21ete2t]

  • 相关阅读:
    Win10纯净版和官方原版哪个好?
    stm32单片机的智能交通灯设计
    迅为恩智浦iTOP-IMX6开发平台
    婴儿肠绞痛怎么办?
    Spring之IoC
    Java “constant string too long” 编译错误
    详解ODX诊断数据库——ODX-V(整车网络拓扑)
    Spring中使用了哪些设计模式
    基于JAVA疫情下图书馆管理系统计算机毕业设计源码+系统+mysql数据库+lw文档+部署
    LeetCode每日一题(1862. Sum of Floored Pairs)
  • 原文地址:https://blog.csdn.net/qq_39032096/article/details/126788555