参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
离散系统特点:系统中的各个变量被处理成为只在离散时刻取值,其状态空间描述只反映离散时刻的变量组间的因果关系和转换关系,因而这类系统通常称为离散时间系统,简称离散系统;
线性离散系统的动态方程可以利用系统的差分方程建立,可以利用线性连续动态方程的离散化得到;
经典控制理论中离散系统通常用差分方程或脉冲传递函数描述,单输入-单输出线性定常离散系统差分方程的一般形式为:
y
(
k
+
n
)
+
a
n
−
1
y
(
k
+
n
−
1
)
+
⋯
+
a
1
y
(
k
+
1
)
+
a
0
y
(
k
)
=
b
n
u
(
k
+
n
)
+
b
n
−
1
u
(
k
+
n
−
1
)
+
⋯
+
b
1
u
(
k
+
1
)
+
b
0
u
(
k
)
y(k+n)+an−1y(k+n−1)+⋯+a1y(k+1)+a0y(k)=bnu(k+n)+bn−1u(k+n−1)+⋯+b1u(k+1)+b0u(k)
其中:
k
k
k表示
k
T
kT
kT时刻,
T
T
T为采样周期,
y
(
k
)
,
u
(
k
)
y(k),u(k)
y(k),u(k)分别为
k
T
kT
kT时刻的输出量和输入量;
a
i
,
b
i
(
i
=
0
,
1
,
2
,
…
,
n
,
且
a
n
=
1
)
a_i,b_i(i=0,1,2,\dots,n,且a_n=1)
ai,bi(i=0,1,2,…,n,且an=1)为表征系统特性的常系数;
考虑初始条件为零时的
z
z
z变换关系有:
Z
[
y
(
k
)
]
=
Y
(
z
)
,
Z
[
y
(
k
+
i
)
]
=
z
i
Y
(
z
)
Z[y(k)]=Y(z),Z[y(k+i)]=z^iY(z)
Z[y(k)]=Y(z),Z[y(k+i)]=ziY(z)
对差分方程取
z
z
z变换,可得:
G
(
z
)
=
Y
(
z
)
U
(
z
)
=
b
n
z
n
+
b
n
−
1
z
n
−
1
+
⋯
+
b
1
z
+
b
0
z
n
+
a
n
−
1
z
n
−
1
+
⋯
+
a
1
z
+
a
0
=
b
n
+
β
n
−
1
z
n
−
1
+
⋯
+
β
1
z
+
β
0
z
n
+
a
n
−
1
z
n
−
1
+
⋯
+
a
1
z
+
a
0
=
b
n
+
N
(
z
)
D
(
z
)
G(z)=Y(z)U(z)=bnzn+bn−1zn−1+⋯+b1z+b0zn+an−1zn−1+⋯+a1z+a0=bn+βn−1zn−1+⋯+β1z+β0zn+an−1zn−1+⋯+a1z+a0=bn+N(z)D(z)
G
(
z
)
G(z)
G(z)称为脉冲传递函数;
N
(
z
)
/
D
(
z
)
N(z)/D(z)
N(z)/D(z)串联分解,引入中间变量
Q
(
z
)
Q(z)
Q(z),有:
z
n
Q
(
z
)
+
a
n
−
1
z
n
−
1
Q
(
z
)
+
⋯
+
a
1
z
Q
(
z
)
+
a
0
Q
(
z
)
=
U
(
z
)
Y
(
z
)
=
β
n
−
1
z
n
−
1
Q
(
z
)
+
⋯
+
β
1
z
Q
(
z
)
+
β
0
Q
(
z
)
znQ(z)+an−1zn−1Q(z)+⋯+a1zQ(z)+a0Q(z)=U(z)Y(z)=βn−1zn−1Q(z)+⋯+β1zQ(z)+β0Q(z)
最后向量-矩阵形式为:
[
x
1
(
k
+
1
)
x
2
(
k
+
1
)
⋮
x
n
−
1
(
k
+
1
)
x
n
(
k
+
1
)
]
=
[
0
1
0
⋯
0
0
0
1
⋯
0
⋮
⋮
⋮
⋮
0
0
0
⋯
1
−
a
0
−
a
1
−
a
2
⋯
−
a
n
−
1
]
[
x
1
(
k
)
x
2
(
k
)
⋮
x
n
−
1
(
k
)
x
n
(
k
)
]
+
[
0
0
⋮
0
1
]
u
(
k
)
[x1(k+1)x2(k+1)⋮xn−1(k+1)xn(k+1)]
y
(
k
)
=
[
β
0
β
1
⋯
β
n
−
1
]
x
(
k
)
+
b
n
u
(
k
)
y(k)=[β0β1⋯βn−1]
简记:
x
(
k
+
1
)
=
G
x
(
k
)
+
h
u
(
k
)
y
(
k
)
=
c
x
(
k
)
+
d
u
(
k
)
x(k+1)=Gx(k)+hu(k)y(k)=cx(k)+du(k)
其中:
G
G
G为友矩阵,
G
,
h
G,h
G,h为可控标准型;
离散系统状态方程描述了 ( k + 1 ) T (k+1)T (k+1)T时刻的状态与 k T kT kT时刻的状态及输入量之间的关系,其输出方程描述了 k T kT kT时刻输出量与 k T kT kT时刻的状态及输入量之间的关系;
线性定常多输入-多输出离散系统的动态方程为:
x
(
k
+
1
)
=
G
x
(
k
)
+
H
u
(
k
)
y
(
k
)
=
C
x
(
k
)
+
D
u
(
k
)
x(k+1)=Gx(k)+Hu(k)y(k)=Cx(k)+Du(k)
已知定常连续系统状态方程:
x
˙
=
A
x
+
B
u
\dot{x}=Ax+Bu
x˙=Ax+Bu在
x
(
t
0
)
x(t_0)
x(t0)及
u
(
t
)
u(t)
u(t)作用下的解为:
x
(
t
)
=
Φ
(
t
−
t
0
)
x
(
t
0
)
+
∫
t
0
T
Φ
(
t
−
τ
)
B
u
(
τ
)
d
τ
x(t)=\Phi(t-t_0)x(t_0)+\int_{t_0}^T\Phi(t-\tau)Bu(\tau){\rm d}\tau
x(t)=Φ(t−t0)x(t0)+∫t0TΦ(t−τ)Bu(τ)dτ
离散化状态方程为:
x
(
k
+
1
)
=
Φ
(
T
)
x
(
k
)
+
G
(
T
)
u
(
k
)
x(k+1)=\Phi(T)x(k)+G(T)u(k)
x(k+1)=Φ(T)x(k)+G(T)u(k)
其中:
G
(
T
)
=
∫
0
T
Φ
(
τ
′
)
B
d
τ
′
和
Φ
(
T
)
=
Φ
(
t
)
∣
t
=
T
G(T)=\int_0^T\Phi(\tau')B{\rm d}\tau'和 \Phi(T)=\Phi(t)|_{t=T}
G(T)=∫0TΦ(τ′)Bdτ′和Φ(T)=Φ(t)∣t=T
离散化系统的输出方程:
y
(
k
)
=
C
x
(
k
)
+
D
u
(
k
)
y(k)=Cx(k)+Du(k)
y(k)=Cx(k)+Du(k)
离散化状态方程的解,亦称离散化状态转移方程:
x
(
k
)
=
Φ
k
(
T
)
x
(
0
)
+
∑
i
=
0
k
−
1
Φ
k
−
1
−
i
(
T
)
G
(
T
)
u
(
i
)
x(k)=\Phi^k(T)x(0)+\sum_{i=0}^{k-1}\Phi^{k-1-i}(T)G(T)u(i)
x(k)=Φk(T)x(0)+i=0∑k−1Φk−1−i(T)G(T)u(i)
当
u
(
i
)
=
0
(
i
=
0
,
1
,
⋯
,
k
−
1
)
u(i)=0(i=0,1,\cdots,k-1)
u(i)=0(i=0,1,⋯,k−1)时,有:
x
(
k
)
=
Φ
k
(
T
)
x
(
0
)
=
Φ
(
k
T
)
x
(
0
)
=
Φ
(
k
)
x
(
0
)
x(k)=\Phi^k(T)x(0)=\Phi(kT)x(0)=\Phi(k)x(0)
x(k)=Φk(T)x(0)=Φ(kT)x(0)=Φ(k)x(0)
其中:
Φ
(
k
)
\Phi(k)
Φ(k)称为离散化系统动态转移矩阵;
输出方程为:
y
(
k
)
=
C
x
(
k
)
+
D
u
(
k
)
=
C
Φ
k
(
T
)
x
(
0
)
+
C
∑
i
=
0
k
−
1
Φ
k
−
1
−
i
(
T
)
G
(
T
)
u
(
i
)
+
D
u
(
k
)
y(k)=Cx(k)+Du(k)=C\Phi^k(T)x(0)+C\sum_{i=0}^{k-1}\Phi^{k-1-i}(T)G(T)u(i)+Du(k)
y(k)=Cx(k)+Du(k)=CΦk(T)x(0)+Ci=0∑k−1Φk−1−i(T)G(T)u(i)+Du(k)
使用递推法可得离散动态方程的解:
x
(
k
)
=
G
k
x
(
0
)
+
∑
i
=
0
k
−
1
G
k
−
1
−
i
H
u
(
i
)
y
(
k
)
=
C
G
k
x
(
0
)
+
C
∑
i
=
0
k
−
1
G
k
−
1
−
i
H
u
(
i
)
+
D
u
(
k
)
x(k)=Gkx(0)+k−1∑i=0Gk−1−iHu(i)y(k)=CGkx(0)+Ck−1∑i=0Gk−1−iHu(i)+Du(k)
式中:
G
k
G^k
Gk表示
k
k
k个
G
G
G相乘;
实例分析:
E
x
a
m
p
l
e
8
:
{\rm Example8:}
Example8: 已知连续时间系统的状态方程为:
x
˙
=
[
0
1
−
2
−
3
]
x
+
[
0
1
]
u
\dot{x}= [01−2−3]
设
T
=
1
T=1
T=1,求相应离散时间状态方程.
解:
s
I
−
A
=
[
s
0
0
s
]
−
[
0
1
−
2
−
3
]
=
[
s
−
1
2
s
+
3
]
sI-A= [s00s]
(
s
I
−
A
)
−
1
=
a
d
j
(
s
I
−
A
)
∣
s
I
−
A
∣
=
1
(
s
+
1
)
(
s
+
2
)
[
s
+
3
1
−
2
s
]
=
[
2
s
+
1
−
1
s
+
2
1
s
+
1
−
1
s
+
2
−
2
s
+
1
+
2
s
+
2
−
1
s
+
1
+
2
s
+
2
]
(sI−A)−1=adj(sI−A)|sI−A|=1(s+1)(s+2)[s+31−2s]=[2s+1−1s+21s+1−1s+2−2s+1+2s+2−1s+1+2s+2]
Φ
(
t
)
=
L
−
1
[
(
s
I
−
A
)
−
1
]
=
[
2
e
−
t
−
e
−
2
t
e
−
t
−
e
−
2
t
−
2
e
−
t
+
2
e
−
2
t
−
e
−
t
+
2
e
−
2
t
]
Φ
(
T
)
=
Φ
(
t
)
∣
t
=
T
=
1
=
[
0.6004
0.2325
−
0.4651
−
0.0972
]
Φ(t)=L−1[(sI−A)−1]=[2e−t−e−2te−t−e−2t−2e−t+2e−2t−e−t+2e−2t]Φ(T)=Φ(t)|t=T=1=[0.60040.2325−0.4651−0.0972]
G
(
t
)
=
∫
0
T
Φ
(
τ
)
B
d
τ
=
∫
0
T
[
e
−
τ
−
e
−
2
τ
−
e
−
τ
+
2
e
−
2
τ
]
d
τ
=
[
1
2
−
e
−
T
+
1
2
e
−
2
T
e
−
T
−
e
−
2
T
]
⇒
G
(
T
)
∣
T
=
1
=
[
0.1998
0.2325
]
G(t)=\int_0^T\Phi(\tau)B{\rm d}\tau=\int_0^T[e−τ−e−2τ−e−τ+2e−2τ]