1 原理介绍
- 离散傅里叶变化是连续傅里叶变化在如下信号下的等价形式:
- 令f(t)是数据源的持续信号,将N个样本表示成f[0],f[1],f[2],.....f[k],....f[N-1]
- ——>原始数据源信号f(t)的傅里叶变换,应该是

- 因为信号脉冲仅在样本点采集,所以可以如下近似:

- 这里,DFT假设波形是周期性的(周期正好是T个interval的跨度)
- 也就是这里我们是从0到N-1采样的f(0)到f(N-1),和从N到2N-1采样得到的f(N)到f(2N-1)是一样的
- 比如我们采样了10个点(0~10),那么DFT会隐式地人为周期就是10

-
所以上式中的ω被表示为:
-
所以离散傅里叶级数可以表示为:
-
上式可以被重写成: 
1.1 欧拉公式 (复习)


2 举例
令连续信号为:![f[k]=5+2cos(\frac{\pi}{2}k-90^\cdot)+3cos(4\pi t)](https://1000bd.com/contentImg/2023/11/05/130911093.png)

采样k=0~k=3 四个点,得到f[0]=8,f[1]=4,f[2]=8,f[3]=0
于是 
可以写成:
![F[n]=\sum_{k=0}^3 f[k] e^{-j \frac{2\pi}{4}kn}=\sum_{k=0}^3 f[k] (-j)^{kn}](https://1000bd.com/contentImg/2023/11/05/130910237.png)
用矩阵的形式,可以写成
![\begin{bmatrix} F[0]]\\ F[1]\\ F[2]\\ F[3] \end{bmatrix} =\begin{bmatrix} 1 & 1 & 1 & 1\\ (-j)^0 &(-j)^1 &(-j)^2 &(-j)^3 \\ [(-j)^2]^0 & [(-j)^2]^1 & [(-j)^2]^2 & [(-j)^2]^3 \\ [(-j)^3]^0 & [(-j)^3]^1 & [(-j)^3]^2 & [(-j)^3]^3 \end{bmatrix} \begin{bmatrix} f[0]\\ f[1]\\ f[2]\\ f[3] \end{bmatrix}](https://latex.csdn.net/eq?%5Cbegin%7Bbmatrix%7D%20F%5B0%5D%5D%5C%5C%20F%5B1%5D%5C%5C%20F%5B2%5D%5C%5C%20F%5B3%5D%20%5Cend%7Bbmatrix%7D%20%3D%5Cbegin%7Bbmatrix%7D%201%20%26%201%20%26%201%20%26%201%5C%5C%20%28-j%29%5E0%20%26%28-j%29%5E1%20%26%28-j%29%5E2%20%26%28-j%29%5E3%20%5C%5C%20%5B%28-j%29%5E2%5D%5E0%20%26%20%5B%28-j%29%5E2%5D%5E1%20%26%20%5B%28-j%29%5E2%5D%5E2%20%26%20%5B%28-j%29%5E2%5D%5E3%20%5C%5C%20%5B%28-j%29%5E3%5D%5E0%20%26%20%5B%28-j%29%5E3%5D%5E1%20%26%20%5B%28-j%29%5E3%5D%5E2%20%26%20%5B%28-j%29%5E3%5D%5E3%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20f%5B0%5D%5C%5C%20f%5B1%5D%5C%5C%20f%5B2%5D%5C%5C%20f%5B3%5D%20%5Cend%7Bbmatrix%7D)

4 逆傅里叶变化

的逆傅里叶变化是:

如果这里令
的话,那么逆傅里叶变化的矩阵形式为
4.1 举例
还是用前面一个例子
已知F[0]=20,F[1]=-4j,F[2]=12,F[3]=4j
希望得到:f[0]=8,f[1]=4,f[2]=8,f[3]=0
![\begin{bmatrix} f[0]]\\ f[1]\\ f[2]\\ f[3] \end{bmatrix} =\frac{1}{4}\begin{bmatrix} 1 & 1 & 1 & 1\\ (j)^0 &(j)^1 &(j)^2 &(j)^3 \\ [(j)^2]^0 & [(j)^2]^1 & [(j)^2]^2 & [(j)^2]^3 \\ [(j)^3]^0 & [(j)^3]^1 & [(j)^3]^2 & [(j)^3]^3 \end{bmatrix} \begin{bmatrix} F[0]\\ F[1]\\ F[2]\\ F[3] \end{bmatrix}](https://latex.csdn.net/eq?%5Cbegin%7Bbmatrix%7D%20f%5B0%5D%5D%5C%5C%20f%5B1%5D%5C%5C%20f%5B2%5D%5C%5C%20f%5B3%5D%20%5Cend%7Bbmatrix%7D%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cbegin%7Bbmatrix%7D%201%20%26%201%20%26%201%20%26%201%5C%5C%20%28j%29%5E0%20%26%28j%29%5E1%20%26%28j%29%5E2%20%26%28j%29%5E3%20%5C%5C%20%5B%28j%29%5E2%5D%5E0%20%26%20%5B%28j%29%5E2%5D%5E1%20%26%20%5B%28j%29%5E2%5D%5E2%20%26%20%5B%28j%29%5E2%5D%5E3%20%5C%5C%20%5B%28j%29%5E3%5D%5E0%20%26%20%5B%28j%29%5E3%5D%5E1%20%26%20%5B%28j%29%5E3%5D%5E2%20%26%20%5B%28j%29%5E3%5D%5E3%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20F%5B0%5D%5C%5C%20F%5B1%5D%5C%5C%20F%5B2%5D%5C%5C%20F%5B3%5D%20%5Cend%7Bbmatrix%7D)
