( 1 ) d y d x + y = e − x ; ( 2 ) x y ′ + y = x 2 + 3 x + 2 ; ( 3 ) y ′ + y c o s x = e − s i n x ; ( 4 ) y ′ + y t a n x = s i n 2 x ; ( 5 ) ( x 2 − 1 ) y ′ + 2 x y − c o s x = 0 ; ( 6 ) d ρ d θ + 3 ρ = 2 ; ( 7 ) d y d x + 2 x y = 4 x ; ( 8 ) y l n y d x + ( x − l n y ) d y = 0 ; ( 9 ) ( x − 2 ) d y d x = y + 2 ( x − 2 ) 3 ; ( 10 ) ( y 2 − 6 x ) d y d x + 2 y = 0. (1) dydx+y=e−x; (2) xy′+y=x2+3x+2; (3) y′+ycos x=e−sin x; (4) y′+ytan x=sin 2x; (5) (x2−1)y′+2xy−cos x=0; (6) dρdθ+3ρ=2; (7) dydx+2xy=4x; (8) yln ydx+(x−ln y)dy=0; (9) (x−2)dydx=y+2(x−2)3; (10) (y2−6x)dydx+2y=0. (1) dxdy+y=e−x; (2) xy′+y=x2+3x+2; (3) y′+ycos x=e−sin x; (4) y′+ytan x=sin 2x; (5) (x2−1)y′+2xy−cos x=0; (6) dθdρ+3ρ=2; (7) dxdy+2xy=4x; (8) yln ydx+(x−ln y)dy=0; (9) (x−2)dxdy=y+2(x−2)3; (10) (y2−6x)dxdy+2y=0.
( 1 ) y = e − ∫ d x [ ∫ e − x ⋅ e ∫ d x d x + C ] = e − x ( ∫ e − x ⋅ e x d x + C ) = e − x ( x + C ) . ( 2 ) 原方程写为 y ′ + 1 x y = x + 3 + 2 x ,则 y = e − ∫ 1 x d x [ ∫ ( x + 3 + 2 x ) e ∫ 1 x d x d x + C ] = 1 x [ ∫ ( x + 3 + 2 x ) x d x + C ] = 1 x [ ∫ ( x 2 + 3 x + 2 ) d x + C ] = 1 x ( 1 3 x 3 + 3 2 x 2 + 2 x + C ) = 1 3 x 2 + 3 2 x + 2 + 1 x C . ( 3 ) y = e − ∫ c o s x d x ( ∫ e − s i n x ⋅ e ∫ c o s x d x d x + C ) = e − s i n x ( ∫ e − s i n x ⋅ e s i n x d x + C ) = e − s i n x ( x + C ) . ( 4 ) y = e − ∫ t a n x d x ( ∫ s i n 2 x e ∫ t a n x d x d x + C ) = c o s x ( ∫ s i n 2 x c o s x d x + C ) = c o s x ( ∫ 2 s i n x d x + C ) = C c o s x − 2 c o s 2 x . ( 5 ) 原方程写为 y ′ + 2 x x 2 − 1 y = c o s x x 2 − 1 ,则 y = e − ∫ 2 x x 2 − 1 d x ( ∫ c o s x x 2 − 1 e ∫ 2 x x 2 − 1 d x d x + C ) = 1 x 2 − 1 [ ∫ c o s x x 2 − 1 ( x 2 − 1 ) d x + C ] = 1 x 2 − 1 ( ∫ c o s x d x + C ) = s i n x + C x 2 − 1 . ( 6 ) ρ = e − ∫ 3 d θ ( ∫ 2 e ∫ 3 d θ d θ + C ) = e − 3 θ ( ∫ 2 e 3 θ d θ + C ) = e − 3 θ ( 2 3 e 3 θ + C ) = 2 3 + C e − 3 θ . ( 7 ) y = e − ∫ 2 x d x ( ∫ 4 x e ∫ 2 x d x d x + C ) = e − x 2 ( ∫ 4 x e x 2 d x + C ) = e − x 2 ( 2 e x 2 + C ) = 2 + C e − x 2 . ( 8 ) 原方程写为 d x d y + 1 y l n y x = 1 y ,则 x = e − ∫ d y y l n y ( ∫ 1 y e ∫ d y y l n y d y + C 1 ) = e − l n ∣ l n y ∣ [ ∫ 1 y e l n ∣ l n y ∣ d y + C 1 ] = 1 l n y ( ∫ l n y y d y + C 1 ) = 1 l n y ( 1 2 l n 2 y + C 1 ) ,即 2 x l n y = l n 2 y + C ( C = 2 C 1 ) . ( 9 ) 原方程写为 d y d x − 1 x − 2 y = 2 ( x − 2 ) 2 ,则 y = e ∫ 1 x − 2 d x [ ∫ 2 ( x − 2 ) 2 ⋅ e − ∫ 1 x − 2 d x d x + C ] = ( x − 2 ) [ ∫ 2 ( x − 2 ) 2 ⋅ 1 x − 2 d x + C ] = ( x − 2 ) [ ∫ 2 ( x − 2 ) d x + C ] = ( x − 2 ) [ ( x − 2 ) 2 + C ] = ( x − 2 ) 3 + C ( x − 2 ) . ( 10 ) 原方程写为 d x d y − 3 y x = − y 2 ,则 x = e ∫ 3 y d y ( ∫ − y 2 e − ∫ 3 y d y d y + C ) = y 3 ( ∫ − y 2 ⋅ 1 y 3 d y + C ) = y 3 ( ∫ − 1 2 y 2 d y + C ) = y 3 ( 1 2 y + C ) = 1 2 y 2 + C y 3 . (1) y=e−∫dx[∫e−x⋅e∫dxdx+C]=e−x(∫e−x⋅exdx+C)=e−x(x+C). (2) 原方程写为y′+1xy=x+3+2x,则y=e−∫1xdx[∫(x+3+2x)e∫1xdxdx+C]= 1x[∫(x+3+2x)xdx+C]=1x[∫(x2+3x+2)dx+C]=1x(13x3+32x2+2x+C)= 13x2+32x+2+1xC. (3) y=e−∫cos xdx(∫e−sin x⋅e∫cos xdxdx+C)=e−sin x(∫e−sin x⋅esin xdx+C)=e−sin x(x+C). (4) y=e−∫tan xdx(∫sin 2xe∫tan xdxdx+C)=cos x(∫sin 2xcos xdx+C)=cos x(∫2sin xdx+C)= Ccos x−2cos2 x. (5) 原方程写为y′+2xx2−1y=cos xx2−1,则y=e−∫2xx2−1dx(∫cos xx2−1e∫2xx2−1dxdx+C)= 1x2−1[∫cos xx2−1(x2−1)dx+C]=1x2−1(∫cos xdx+C)=sin x+Cx2−1. (6) ρ=e−∫3dθ(∫2e∫3dθdθ+C)=e−3θ(∫2e3θdθ+C)=e−3θ(23e3θ+C)=23+Ce−3θ. (7) y=e−∫2xdx(∫4xe∫2xdxdx+C)=e−x2(∫4xex2dx+C)=e−x2(2ex2+C)=2+Ce−x2. (8) 原方程写为dxdy+1yln yx=1y,则x=e−∫dyyln y(∫1ye∫dyyln ydy+C1)=e−ln |ln y|[∫1yeln |ln y|dy+C1]= 1ln y(∫ln yydy+C1)=1ln y(12ln2 y+C1),即2xln y=ln2 y+C (C=2C1). (9) 原方程写为dydx−1x−2y=2(x−2)2,则y=e∫1x−2dx[∫2(x−2)2⋅e−∫1x−2dxdx+C]= (x−2)[∫2(x−2)2⋅1x−2dx+C]=(x−2)[∫2(x−2)dx+C]= (x−2)[(x−2)2+C]=(x−2)3+C(x−2). (10) 原方程写为dxdy−3yx=−y2,则x=e∫3ydy(∫−y2e−∫3ydydy+C)=y3(∫−y2⋅1y3dy+C)= y3(∫−12y2dy+C)=y3(12y+C)=12y2+Cy3. (1) y=e−∫dx[∫e−x⋅e∫dxdx+C]=e−x(∫e−x⋅exdx+C)=e−x(x+C). (2) 原方程写为y′+x1y=x+3+x2,则y=e−∫x1dx[∫(x+3+x2)e∫x1dxdx+C]= x1[∫(x+3+x2)xdx+C]=x1[∫(x2+3x+2)dx+C]=x1(31x3+23x2+2x+C)= 31x2+23x+2+x1C. (3) y=e−∫cos xdx(∫e−sin x⋅e∫cos xdxdx+C)=e−sin x(∫e−sin x⋅esin xdx+C)=e−sin x(x+C). (4) y=e−∫tan xdx(∫sin 2xe∫tan xdxdx+C)=cos x(∫cos xsin 2xdx+C)=cos x(∫2sin xdx+C)= Ccos x−2cos2 x. (5) 原方程写为y′+x2−12xy=x2−1cos x,则y=e−∫x2−12xdx(∫x2−1cos xe∫x2−12xdxdx+C)= x2−11[∫x2−1cos x(x2−1)dx+C]=x2−11(∫cos xdx+C)=x2−1sin x+C. (6) ρ=e−∫3dθ(∫2e∫3dθdθ+C)=e−3θ(∫2e3θdθ+C)=e−3θ(32e3θ+C)=32+Ce−3θ. (7) y=e−∫2xdx(∫4xe∫2xdxdx+C)=e−x2(∫4xex2dx+C)=e−x2(2ex2+C)=2+Ce−x2. (8) 原方程写为dydx+yln y1x=y1,则x=e−∫yln ydy(∫y1e∫yln ydydy+C1)=e−ln ∣ln y∣[∫y1eln ∣ln y∣dy+C1]= ln y1(∫yln ydy+C1)=ln y1(21ln2 y+C1),即2xln y=ln2 y+C (C=2C1). (9) 原方程写为dxdy−x−21y=2(x−2)2,则y=e∫x−21dx[∫2(x−2)2⋅e−∫x−21dxdx+C]= (x−2)[∫2(x−2)2⋅x−21dx+C]=(x−2)[∫2(x−2)dx+C]= (x−2)[(x−2)2+C]=(x−2)3+C(x−2). (10) 原方程写为dydx−y3x=−2y,则x=e∫y3dy(∫−2ye−∫y3dydy+C)=y3(∫−2y⋅y31dy+C)= y3(∫−2y21dy+C)=y3(2y1+C)=21y2+Cy3.
( 1 ) d y d x − y t a n x = s e c x , y ∣ x = 0 = 0 ; ( 2 ) d y d x + y x = s i n x x , y ∣ x = π = 1 ; ( 3 ) d y d x + y c o t x = 5 e c o s x , y x = π 2 = − 4 ; ( 4 ) d y d x + 3 y = 8 , y ∣ x = 0 = 2 ; ( 5 ) d y d x + 2 − 3 x 2 x 3 y = 1 , y ∣ x = 1 = 0. (1) dydx−ytan x=sec x,y|x=0=0; (2) dydx+yx=sin xx,y|x=π=1; (3) dydx+ycot x=5ecos x,yx=π2=−4; (4) dydx+3y=8,y|x=0=2; (5) dydx+2−3x2x3y=1,y|x=1=0. (1) dxdy−ytan x=sec x,y∣x=0=0; (2) dxdy+xy=xsin x,y∣x=π=1; (3) dxdy+ycot x=5ecos x,yx=2π=−4; (4) dxdy+3y=8,y∣x=0=2; (5) dxdy+x32−3x2y=1,y∣x=1=0.
( 1 ) y = e ∫ t a n x d x ( ∫ s e c x e − ∫ t a n x d x d x + C ) = e − l n ∣ c o s x ∣ ( ∫ s e c x e l n ∣ c o s x ∣ d x + C ) = 1 c o s x ( ∫ s e c x ⋅ c o s x d x + C ) = x + C c o s x . 代入初值条件 x = 0 , y = 0 ,得 C = 0 ,所求特解为 y = x c o s x . ( 2 ) y = e − ∫ 1 x d x ( ∫ s i n x x e ∫ 1 x d x d x + C ) = 1 x ( ∫ s i n x x ⋅ x d x + C ) = 1 x ( − c o s x + C ) . 代入初值条件 x = π , y = 1 , 得 C = π − 1 ,所求特解为 y = 1 x ( π − 1 − c o s x ) . ( 3 ) y = e − ∫ c o t x d x ( ∫ 5 e c o s x e ∫ c o t x d x d x + C ) = 1 s i n x ( ∫ 5 e c o s x ⋅ s i n x d x + C ) = 1 s i n x ( − 5 e c o s x + C ) , 代入初值条件 x = π 2 , y = − 4 ,得 C = 1 ,所求特解为 y = 1 − 5 e c o s x s i n x ,即 y s i n x + 5 e c o s x = 1. ( 4 ) y = e − ∫ 3 d x ( ∫ 8 e ∫ 3 d x d x + C ) = e − 3 x ( ∫ 8 e 3 x d x + C ) = e − 3 x ( 8 3 e 3 x + C ) = 8 3 + C e − 3 x ,代入初值条件 x = 0 , y = 2 ,得 C = − 2 3 ,所求特解为 y = 2 3 ( 4 − e − 3 x ) . ( 5 ) y = e − ∫ ( 2 x 3 − 3 x ) d x [ ∫ e ∫ ( 2 x 3 − 3 x ) d x d x + C ] = e 1 x 2 + 3 l n x ( ∫ e − ( 1 x 2 + 3 l n x ) d x + C ) = x 3 e 1 x 2 ( ∫ e − 1 x 2 x 3 d x + C ) = x 3 e 1 x 2 [ 1 2 ∫ e − 1 x 2 d ( − 1 x 2 ) + C ] = x 3 e 1 x 2 ( 1 2 e − 1 x 2 + C ) = 1 2 x 3 + C x 3 e 1 x 2 ,代入初值条件 x = 1 , y = 0 , 得 C = − 1 2 e ,所求特解为 y = 1 2 x 3 ( 1 − e 1 x 2 − 1 ) . (1) y=e∫tan xdx(∫sec xe−∫tan xdxdx+C)=e−ln |cos x|(∫sec xeln |cos x|dx+C)= 1cos x(∫sec x⋅cos xdx+C)=x+Ccos x.代入初值条件x=0,y=0,得C=0,所求特解为y=xcos x. (2) y=e−∫1xdx(∫sin xxe∫1xdxdx+C)=1x(∫sin xx⋅xdx+C)=1x(−cos x+C).代入初值条件x=π,y=1, 得C=π−1,所求特解为y=1x(π−1−cos x). (3) y=e−∫cot xdx(∫5ecos xe∫cot xdxdx+C)=1sin x(∫5ecos x⋅sin xdx+C)=1sin x(−5ecos x+C), 代入初值条件x=π2,y=−4,得C=1,所求特解为y=1−5ecos xsin x,即ysin x+5ecos x=1. (4) y=e−∫3dx(∫8e∫3dxdx+C)=e−3x(∫8e3xdx+C)=e−3x(83e3x+C)=83+Ce−3x,代入初值条件 x=0,y=2,得C=−23,所求特解为y=23(4−e−3x). (5) y=e−∫(2x3−3x)dx[∫e∫(2x3−3x)dxdx+C]=e1x2+3ln x(∫e−(1x2+3ln x)dx+C)=x3e1x2(∫e−1x2x3dx+C)= x3e1x2[12∫e−1x2d(−1x2)+C]=x3e1x2(12e−1x2+C)=12x3+Cx3e1x2,代入初值条件x=1,y=0, 得C=−12e,所求特解为y=12x3(1−e1x2−1). (1) y=e∫tan xdx(∫sec xe−∫tan xdxdx+C)=e−ln ∣cos x∣(∫sec xeln ∣cos x∣dx+C)= cos x1(∫sec x⋅cos xdx+C)=cos xx+C.代入初值条件x=0,y=0,得C=0,所求特解为y=cos xx. (2) y=e−∫x1dx(∫xsin xe∫x1dxdx+C)=x1(∫xsin x⋅xdx+C)=x1(−cos x+C).代入初值条件x=π,y=1, 得C=π−1,所求特解为y=x1(π−1−cos x). (3) y=e−∫cot xdx(∫5ecos xe∫cot xdxdx+C)=sin x1(∫5ecos x⋅sin xdx+C)=sin x1(−5ecos x+C), 代入初值条件x=2π,y=−4,得C=1,所求特解为y=sin x1−5ecos x,即ysin x+5ecos x=1. (4) y=e−∫3dx(∫8e∫3dxdx+C)=e−3x(∫8e3xdx+C)=e−3x(38e3x+C)=38+Ce−3x,代入初值条件 x=0,y=2,得C=−32,所求特解为y=32(4−e−3x). (5) y=e−∫(x32−x3)dx[∫e∫(x32−x3)dxdx+C]=ex21+3ln x(∫e−(x21+3ln x)dx+C)=x3ex21(∫x3e−x21dx+C)= x3ex21[21∫e−x21d(−x21)+C]=x3ex21(21e−x21+C)=21x3+Cx3ex21,代入初值条件x=1,y=0, 得C=−2e1,所求特解为y=21x3(1−ex21−1).
设曲线方程为 y = y ( x ) ,根据题意可知 y ′ = 2 x + y ,即 y ′ − y = 2 x , y ∣ x = 0 = 0 , y = e ∫ d x ( ∫ 2 x e − ∫ d x d x + C ) = e x ( ∫ 2 x e − x d x + C ) = e x ( − 2 x e − x − 2 e − x + C ) = − 2 x − 2 + C e x ,由 x = 0 , y = 0 ,得 C = 2 , 所求曲线方程为 y = 2 ( e x − x − 1 ) . 设曲线方程为y=y(x),根据题意可知y′=2x+y,即y′−y=2x,y|x=0=0,y=e∫dx(∫2xe−∫dxdx+C)= ex(∫2xe−xdx+C)=ex(−2xe−x−2e−x+C)=−2x−2+Cex,由x=0,y=0,得C=2, 所求曲线方程为y=2(ex−x−1). 设曲线方程为y=y(x),根据题意可知y′=2x+y,即y′−y=2x,y∣x=0=0,y=e∫dx(∫2xe−∫dxdx+C)= ex(∫2xe−xdx+C)=ex(−2xe−x−2e−x+C)=−2x−2+Cex,由x=0,y=0,得C=2, 所求曲线方程为y=2(ex−x−1).
根据题意,有 m a = k 1 t − k 2 v , a = d v d t ,即 m d v d t = k 1 t − k 2 v , v ∣ t = 0 = 0 ,将原方程写为 d v d t + k 2 m v = k 1 m t , 则 v = e − ∫ k 2 m d t ( ∫ k 1 m t ⋅ e ∫ k 2 m d t d t + C ) = e − k 2 m t ( k 1 m ∫ t e k 2 m t d t + C ) = e − k 2 m t ( k 1 k 2 t e k 2 m t − k 1 k 2 ∫ e k 2 m t d t + C ) = e − k 2 m t ( k 1 k 2 t e k 2 m t − k 1 m k 2 2 e k 2 m t + C ) = k 1 k 2 t − k 1 m k 2 2 + C e − k 2 m t . 由 t = 0 , v = 0 ,得 C = k 1 m k 2 2 , 所以速度与时间的函数关系为 v = k 1 k 2 t − k 1 m k 2 2 ( 1 − e − k 2 m t ) . 根据题意,有ma=k1t−k2v,a=dvdt,即mdvdt=k1t−k2v,v|t=0=0,将原方程写为dvdt+k2mv=k1mt, 则v=e−∫k2mdt(∫k1mt⋅e∫k2mdtdt+C)=e−k2mt(k1m∫tek2mtdt+C)=e−k2mt(k1k2tek2mt−k1k2∫ek2mtdt+C)= e−k2mt(k1k2tek2mt−k1mk22ek2mt+C)=k1k2t−k1mk22+Ce−k2mt.由t=0,v=0,得C=k1mk22, 所以速度与时间的函数关系为v=k1k2t−k1mk22(1−e−k2mt). 根据题意,有ma=k1t−k2v,a=dtdv,即mdtdv=k1t−k2v,v∣t=0=0,将原方程写为dtdv+mk2v=mk1t, 则v=e−∫mk2dt(∫mk1t⋅e∫mk2dtdt+C)=e−mk2t(mk1∫temk2tdt+C)=e−mk2t(k2k1temk2t−k2k1∫emk2tdt+C)= e−mk2t(k2k1temk2t−k22k1memk2t+C)=k2k1t−k22k1m+Ce−mk2t.由t=0,v=0,得C=k22k1m, 所以速度与时间的函数关系为v=k2k1t−k22k1m(1−e−mk2t).
根据题意,有 20 s i n 5 t = 10 i + 2 d i d t ,即 d i d t + 5 i = 10 s i n 5 t , i ∣ t = 0 = 0 , i = e − ∫ 5 d t ( ∫ 10 s i n 5 t e ∫ 5 d t d t + C 1 ) = e − 5 t ( ∫ 10 s i n 5 t e 5 t d t + C 1 ) ,记 I = ∫ 10 s i n 5 t e 5 t d t ,则 I = 2 ∫ s i n 5 t d ( e 5 t ) = 2 s i n 5 t e 5 t − 2 ∫ e 5 t c o s 5 t ⋅ 5 d t = 2 s i n 5 t e 5 t − 2 ∫ c o s 5 t d ( e 5 t ) = 2 s i n 5 t e 5 t − 2 c o s 5 t e 5 t − 10 ∫ s i n 5 t e 5 t d t = 2 e 5 t ( s i n 5 t − c o s 5 t ) − I , 所以, I = e 5 t ( s i n 5 t − c o s 5 t ) + C 2 ,得 i = e − 5 t ⋅ [ e 5 t ( s i n 5 t − c o s 5 t ) + C ] ( C = C 1 + C 2 ) = s i n 5 t − c o s 5 t + C e − 5 t ,代入初值条件 t = 0 , i = 0 ,得 C = 1 ,所以电流 i 与时间 t 的函数关系为 i = e − 5 t + s i n 5 t − c o s 5 t . 根据题意,有20sin 5t=10i+2didt,即didt+5i=10sin 5t,i|t=0=0,i=e−∫5dt(∫10sin 5te∫5dtdt+C1)= e−5t(∫10sin 5te5tdt+C1),记I=∫10sin 5te5tdt,则I=2∫sin 5td(e5t)=2sin 5te5t−2∫e5tcos 5t⋅5dt= 2sin 5te5t−2∫cos 5td(e5t)=2sin 5te5t−2cos 5te5t−10∫sin 5te5tdt=2e5t(sin 5t−cos 5t)−I, 所以,I=e5t(sin 5t−cos 5t)+C2,得i=e−5t⋅[e5t(sin 5t−cos 5t)+C] (C=C1+C2)= sin 5t−cos 5t+Ce−5t,代入初值条件t=0,i=0,得C=1,所以电流i与时间t的函数关系为 i=e−5t+sin 5t−cos 5t. 根据题意,有20sin 5t=10i+2dtdi,即dtdi+5i=10sin 5t,i∣t=0=0,i=e−∫5dt(∫10sin 5te∫5dtdt+C1)= e−5t(∫10sin 5te5tdt+C1),记I=∫10sin 5te5tdt,则I=2∫sin 5td(e5t)=2sin 5te5t−2∫e5tcos 5t⋅5dt= 2sin 5te5t−2∫cos 5td(e5t)=2sin 5te5t−2cos 5te5t−10∫sin 5te5tdt=2e5t(sin 5t−cos 5t)−I, 所以,I=e5t(sin 5t−cos 5t)+C2,得i=e−5t⋅[e5t(sin 5t−cos 5t)+C] (C=C1+C2)= sin 5t−cos 5t+Ce−5t,代入初值条件t=0,i=0,得C=1,所以电流i与时间t的函数关系为 i=e−5t+sin 5t−cos 5t.
由 v = x y ,即 y = v x ,得 d y = x d v − v d x x 2 ,原方程写为 x y f ( x y ) d x + x 2 g ( x y ) d y = 0 ,将 v = x y , d y = x d v − v d x x 2 代入上式,得 v f ( v ) d x + g ( v ) ( x d v − v d x ) = 0 ,分离变量得 g ( v ) d v v [ f ( v ) − g ( v ) ] + d x x = 0 ,两端积分, 得 ∫ g ( v ) d v v [ f ( v ) − g ( v ) ] + l n ∣ x ∣ = C ,代入 v = x y ,所求通解为 ∫ g ( x y ) d ( x y ) x y [ f ( x y ) − g ( x y ) ] + l n ∣ x ∣ = C 由v=xy,即y=vx,得dy=xdv−vdxx2,原方程写为xyf(xy)dx+x2g(xy)dy=0,将v=xy, dy=xdv−vdxx2代入上式,得vf(v)dx+g(v)(xdv−vdx)=0,分离变量得g(v)dvv[f(v)−g(v)]+dxx=0,两端积分, 得∫g(v)dvv[f(v)−g(v)]+ln |x|=C,代入v=xy,所求通解为∫g(xy)d(xy)xy[f(xy)−g(xy)]+ln |x|=C 由v=xy,即y=xv,得dy=x2xdv−vdx,原方程写为xyf(xy)dx+x2g(xy)dy=0,将v=xy, dy=x2xdv−vdx代入上式,得vf(v)dx+g(v)(xdv−vdx)=0,分离变量得v[f(v)−g(v)]g(v)dv+xdx=0,两端积分, 得∫v[f(v)−g(v)]g(v)dv+ln ∣x∣=C,代入v=xy,所求通解为∫xy[f(xy)−g(xy)]g(xy)d(xy)+ln ∣x∣=C
( 1 ) d y d x = ( x + y ) 2 ; ( 2 ) d y d x = 1 x − y + 1 ; ( 3 ) x y ′ + y = y ( l n x + l n y ) ; ( 4 ) y ′ = y 2 + 2 ( s i n x − 1 ) y + s i n 2 x − 2 s i n x − c o s x + 1 ; ( 5 ) y ( x y + 1 ) d x + x ( 1 + x y + x 2 y 2 ) d y = 0. (1) dydx=(x+y)2; (2) dydx=1x−y+1; (3) xy′+y=y(ln x+ln y); (4) y′=y2+2(sin x−1)y+sin2 x−2sin x−cos x+1; (5) y(xy+1)dx+x(1+xy+x2y2)dy=0. (1) dxdy=(x+y)2; (2) dxdy=x−y1+1; (3) xy′+y=y(ln x+ln y); (4) y′=y2+2(sin x−1)y+sin2 x−2sin x−cos x+1; (5) y(xy+1)dx+x(1+xy+x2y2)dy=0.
( 1 ) 令 u = x + y ,则 d u d x = 1 + d y d x ,原方程写为 d u d x = u 2 + 1 ,分离变量得 d u u 2 + 1 = d x ,两端积分, 得 a r c t a n u = x + C ,即 u = t a n ( x + C ) ,代入 u = x + y ,得原方程通解为 y = − x + t a n ( x + C ) . ( 2 ) 令 u = x − y ,则 d u d x = 1 − d y d x ,原方程写为 d u d x = − 1 u ,即 u d u + d x = 0 ,两端积分,得 1 2 u 2 + x = C 1 , 代入 u = x − y ,得原方程通解为 ( x − y ) 2 + 2 x = C ( C = 2 C 1 ) . ( 3 ) 令 u = x y ,则 u ′ = y + x y ′ ,原方程写为 u ′ = u x l n u ,即 d u u l n u = d x x ,两端积分,得 l n ∣ l n u ∣ = l n ∣ x ∣ + l n C 1 , 即 u = e C x ,代入 u = x y ,得原方程通解为 x y = e C x . ( 4 ) 原方程写为 y ′ = ( y + s i n x − 1 ) 2 − c o s x ,令 u = y + s i n x − 1 ,则 u ′ = y ′ + c o s x ,原方程变为 u ′ = u 2 , 即 d u u 2 = d x ,两端积分,得 − 1 u = x + C ,即 u = − 1 x + C ,代入 u = y + s i n x − 1 , 得原方程通解为 y = 1 − s i n x − 1 x + C . ( 5 ) 原方程写为 x y ( x y + 1 ) + x 2 ( 1 + x y + x 2 y 2 ) d y d x = 0 ,令 u = x y ,即 y = u x ,则 d y d x = x d u d x − u x 2 , 原方程变为 u ( u + 1 ) + ( 1 + u + u 2 ) ( x d u d x − u ) = 0 ,整理并分离变量得 1 + u + u 2 u 3 d u = d x x ,两端积分, 得 − 1 2 u 2 − 1 u + l n ∣ u ∣ = l n ∣ x ∣ + C 1 ,代入 u = x y ,得原方程通解为 2 x 2 y 2 l n ∣ y ∣ − 2 x y − 1 = C x 2 y 2 ( C = 2 C 1 ) (1) 令u=x+y,则dudx=1+dydx,原方程写为dudx=u2+1,分离变量得duu2+1=dx,两端积分, 得arctan u=x+C,即u=tan(x+C),代入u=x+y,得原方程通解为y=−x+tan(x+C). (2) 令u=x−y,则dudx=1−dydx,原方程写为dudx=−1u,即udu+dx=0,两端积分,得12u2+x=C1, 代入u=x−y,得原方程通解为(x−y)2+2x=C (C=2C1). (3) 令u=xy,则u′=y+xy′,原方程写为u′=uxln u,即duuln u=dxx,两端积分,得ln |ln u|=ln |x|+ln C1, 即u=eCx,代入u=xy,得原方程通解为xy=eCx. (4) 原方程写为y′=(y+sin x−1)2−cos x,令u=y+sin x−1,则u′=y′+cos x,原方程变为u′=u2, 即duu2=dx,两端积分,得−1u=x+C,即u=−1x+C,代入u=y+sin x−1, 得原方程通解为y=1−sin x−1x+C. (5) 原方程写为xy(xy+1)+x2(1+xy+x2y2)dydx=0,令u=xy,即y=ux,则dydx=xdudx−ux2, 原方程变为u(u+1)+(1+u+u2)(xdudx−u)=0,整理并分离变量得1+u+u2u3du=dxx,两端积分, 得−12u2−1u+ln |u|=ln |x|+C1,代入u=xy,得原方程通解为2x2y2ln |y|−2xy−1=Cx2y2 (C=2C1) (1) 令u=x+y,则dxdu=1+dxdy,原方程写为dxdu=u2+1,分离变量得u2+1du=dx,两端积分, 得arctan u=x+C,即u=tan(x+C),代入u=x+y,得原方程通解为y=−x+tan(x+C). (2) 令u=x−y,则dxdu=1−dxdy,原方程写为dxdu=−u1,即udu+dx=0,两端积分,得21u2+x=C1, 代入u=x−y,得原方程通解为(x−y)2+2x=C (C=2C1). (3) 令u=xy,则u′=y+xy′,原方程写为u′=xuln u,即uln udu=xdx,两端积分,得ln ∣ln u∣=ln ∣x∣+ln C1, 即u=eCx,代入u=xy,得原方程通解为xy=eCx. (4) 原方程写为y′=(y+sin x−1)2−cos x,令u=y+sin x−1,则u′=y′+cos x,原方程变为u′=u2, 即u2du=dx,两端积分,得−u1=x+C,即u=−x+C1,代入u=y+sin x−1, 得原方程通解为y=1−sin x−x+C1. (5) 原方程写为xy(xy+1)+x2(1+xy+x2y2)dxdy=0,令u=xy,即y=xu,则dxdy=x2xdxdu−u, 原方程变为u(u+1)+(1+u+u2)(xdxdu−u)=0,整理并分离变量得u31+u+u2du=xdx,两端积分, 得−2u21−u1+ln ∣u∣=ln ∣x∣+C1,代入u=xy,得原方程通解为2x2y2ln ∣y∣−2xy−1=Cx2y2 (C=2C1)
( 1 ) d y d x + y = y 2 ( c o s x − s i n x ) ; ( 2 ) d y d x − 3 x y = x y 2 ; ( 3 ) d y d x + 1 3 y = 1 3 ( 1 − 2 x ) y 4 ; ( 4 ) d y d x − y = x y 5 ; ( 5 ) x d y − [ y + x y 3 ( 1 + l n x ) ] d x = 0. (1) dxdy+y=y2(cos x−sin x); (2) dxdy−3xy=xy2; (3) dxdy+31y=31(1−2x)y4; (4) dxdy−y=xy5; (5) xdy−[y+xy3(1+ln x)]dx=0.
( 1 ) 原方程写为 1 y 2 y ′ + 1 y = c o s x − s i n x ,令 z = 1 y ,则 z ′ = − 1 y 2 y ′ ,原方程化为 z ′ − z = s i n x − c o s x , z = e ∫ d x [ ∫ ( s i n x − c o s x ) e − ∫ d x d x + C ] = e x [ ∫ ( s i n x − c o s x ) e − x d x + C ] = e x ( ∫ s i n x e − x d x − ∫ c o s x e − x d x + C ) ,其中 ∫ s i n x e − x d x = − ∫ s i n x d ( e − x ) = − s i n x e − x + ∫ e − x c o s x d x ,所以 z = e x ( − s i n x e − x + C ) = C e x − s i n x ,所求通解为 1 y = C e x − s i n x . ( 2 ) 原方程写为 y − 2 y ′ − 3 x y − 1 = x ,令 z = y − 1 ,则 z ′ = − y − 2 y ′ ,原方程化为 z ′ + 3 x z = − x , z = e − ∫ 3 x d x ( ∫ − x e ∫ 3 x d x d x + C ) = e − 3 2 x 2 ( ∫ − x e 3 2 x 2 d x + C ) = e − 3 2 x 2 ( − 1 3 e 3 2 x 2 + C ) = − 1 3 + C e − 3 2 x 2 , 所求通解为 y − 1 = − 1 3 + C e − 3 2 x 2 . ( 3 ) 原方程写为 y − 4 y ′ + 1 3 y − 3 = 1 3 ( 1 − 2 x ) ,令 z = y − 3 ,则 z ′ = − 3 y − 4 y ′ ,原方程化为 z ′ − z = 1 − 2 x , z = e ∫ d x [ ∫ ( 1 − 2 x ) e − ∫ d x d x + C ] = e x [ ∫ ( 1 − 2 x ) e − x d x + C ] = e x [ ( − 2 x − 1 ) e − x + C ] = − 2 x − 1 + C e x , 所求通解为 y − 3 = − 2 x − 1 + C e x . ( 4 ) 原方程写为 y − 5 y ′ − y − 4 = x ,令 z = y − 4 ,则 z ′ = − 4 y − 5 y ′ ,原方程化为 z ′ + 4 z = − 4 x , z = e − ∫ 4 d x ( ∫ − 4 x e ∫ 4 x d x d x + C ) = e − 4 x ( ∫ − 4 x e 4 x d x + C ) = e − 4 x ( − x e 4 x + 1 4 e 4 x + C ) = − x + 1 4 + C e − 4 x ,所求通解为 y − 4 = − x + 1 4 + C e − 4 x . ( 5 ) 原方程写为 y ′ − 1 x y = ( 1 + l n x ) y 3 ,即 y − 3 y ′ − 1 x y − 2 = 1 + l n x ,令 z = y − 2 ,则 z ′ = − 2 y − 3 y ′ , 原方程化为 z ′ + 2 x z = − 2 ( 1 + l n x ) , z = e − ∫ 2 x d x [ ∫ − 2 ( 1 + l n x ) e ∫ 2 x d x d x + C ] = x − 2 [ ∫ − 2 ( 1 + l n x ) x 2 d x + C ] = x − 2 [ − 2 3 x 3 ( 1 + l n x ) + 2 3 ∫ x 3 ⋅ 1 x d x + C ] = x − 2 [ − 2 3 x 3 ( 1 + l n x ) + 2 9 x 3 + C ] = − 2 3 x ( 1 + l n x ) + 2 9 x + C x − 2 , 所求通解为 y − 2 = − 2 3 x ( 1 + l n x ) + 2 9 x + C x − 2 . (1) 原方程写为y21y′+y1=cos x−sin x,令z=y1,则z′=−y21y′,原方程化为z′−z=sin x−cos x, z=e∫dx[∫(sin x−cos x)e−∫dxdx+C]=ex[∫(sin x−cos x)e−xdx+C]= ex(∫sin xe−xdx−∫cos xe−xdx+C),其中∫sin xe−xdx=−∫sin xd(e−x)= −sin xe−x+∫e−xcos xdx,所以z=ex(−sin xe−x+C)=Cex−sin x,所求通解为y1=Cex−sin x. (2) 原方程写为y−2y′−3xy−1=x,令z=y−1,则z′=−y−2y′,原方程化为z′+3xz=−x, z=e−∫3xdx(∫−xe∫3xdxdx+C)=e−23x2(∫−xe23x2dx+C)=e−23x2(−31e23x2+C)=−31+Ce−23x2, 所求通解为y−1=−31+Ce−23x2. (3) 原方程写为y−4y′+31y−3=31(1−2x),令z=y−3,则z′=−3y−4y′,原方程化为z′−z=1−2x, z=e∫dx[∫(1−2x)e−∫dxdx+C]=ex[∫(1−2x)e−xdx+C]=ex[(−2x−1)e−x+C]=−2x−1+Cex, 所求通解为y−3=−2x−1+Cex. (4) 原方程写为y−5y′−y−4=x,令z=y−4,则z′=−4y−5y′,原方程化为z′+4z=−4x, z=e−∫4dx(∫−4xe∫4xdxdx+C)=e−4x(∫−4xe4xdx+C)=e−4x(−xe4x+41e4x+C)= −x+41+Ce−4x,所求通解为y−4=−x+41+Ce−4x. (5) 原方程写为y′−x1y=(1+ln x)y3,即y−3y′−x1y−2=1+ln x,令z=y−2,则z′=−2y−3y′, 原方程化为z′+x2z=−2(1+ln x),z=e−∫x2dx[∫−2(1+ln x)e∫x2dxdx+C]= x−2[∫−2(1+ln x)x2dx+C]=x−2[−32x3(1+ln x)+32∫x3⋅x1dx+C]= x−2[−32x3(1+ln x)+92x3+C]=−32x(1+ln x)+92x+Cx−2, 所求通解为y−2=−32x(1+ln x)+92x+Cx−2.