启蒙题,场上看见这题后才开始学习流。
题意
n n n 个人共进行 m 1 + m 2 m1+m2 m1+m2 场比赛,其中 m 1 m1 m1 场的结果已知,同时已知剩下 m 2 m2 m2 场中每场的参赛选手,问 1 1 1 号是否有可能获胜(即没有其他选手的胜利场次大于它)
容易想到,在剩下的 m 2 m2 m2 场中,只要有 1 1 1 号出场,那么一定贪心的使 1 1 1 号全部获胜,则其他选手在剩下 m 2 m2 m2 场中的最多获胜次数为 c n t [ 1 ] − c n t [ i ] cnt[1]-cnt[i] cnt[1]−cnt[i],其中 c n t [ i ] cnt[i] cnt[i] 为 i i i 号选手在前 m 1 m1 m1 场中的获胜次数。
建图通过源点 s s s 向所有未比赛的场次(有 1 1 1 号选手参加的不计入,下同)连容量为 1 1 1 的边,场次向两个参赛选手连容量为 1 1 1 的边,参赛选手向汇点 t t t 连容量为 c n t [ 1 ] − c n t [ i ] cnt[1]-cnt[i] cnt[1]−cnt[i] 的边,跑最大流判断是否等于未比赛场次。
参考代码
#include
#define itn int
#define int long long
#define endl "\n"
#define PII pair<int, int>
using namespace std;
const int N = 1e6 + 10;
const int M = 1e6 + 10;
const itn inf = 0x3f3f3f;
const int mod = 998244353;
// const int mod = 1e9 + 7;
int n, m, s, t;
int nex[M];
struct Edge {
int from, to, cap, flow;
Edge(int f, int t, int c, int fl) {
from = f;
to = t;
cap = c;
flow = fl;
}
};
struct Dinic {
int n, m, s, t; //结点数,边数(包括反向弧),源点编号和汇点编号
vector<Edge> edges; //边表。edge[e]和edge[e^1]互为反向弧
vector<int> G[N]; //邻接表,G[i][j]表示节点i和第j条边在e数组中的序号
bool vis[N]; // BFS使用
int d[N]; //从起点到i的距离
int cur[N]; //当前弧下标
void clear_all(int n) {
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
}
void clear_flow() {
int len = edges.size();
for (int i = 0; i < len; i++)
edges[i].flow = 0;
}
void add_edge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
int len = G[x].size();
for (int i = 0; i < len; i++) {
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if (x == t || a == 0)
return a;
int flow = 0, f, len = G[x].size();
for (int& i = cur[x]; i < len; i++) {
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] &&
(f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0)
break;
}
}
return flow;
}
int maxflow(int s, int t) {
this->s = s;
this->t = t;
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, inf);
}
return flow;
}
int mincut() { // call this after maxflow
int ans = 0;
int len = edges.size();
for (int i = 0; i < len; i++) {
Edge& e = edges[i];
if (vis[e.from] && !vis[e.to] && e.cap > 0)
ans++;
}
return ans;
}
void reduce() {
int len = edges.size();
for (int i = 0; i < len; i++)
edges[i].cap -= edges[i].flow;
}
} dinic;
int cnt[N];
void solve() {
itn n, m1, m2;
cin >> n >> m1 >> m2;
memset(cnt, 0, sizeof(cnt));
dinic.clear_all(n + m2 + 10);
int s = 0, t = n + m2 + 1;
for (int i = 1; i <= m1; i++) {
int x, y, op;
cin >> x >> y >> op;
if (op == 1)
cnt[x]++;
else
cnt[y]++;
}
int sum = 0;
for (int i = 1; i <= m2; i++) {
int x, y;
cin >> x >> y;
if (x > y)
swap(x, y);
if (x == 1) {
cnt[x]++;
continue;
}
sum++;
dinic.add_edge(s, i, 1);
dinic.add_edge(i, x + m2, 1);
dinic.add_edge(i, y + m2, 1);
}
int maxx = 0;
for (int i = 2; i <= n; i++) {
maxx = max(maxx, cnt[i]);
dinic.add_edge(i + m2, t, cnt[1] - cnt[i]);
}
if (maxx > cnt[1]) {
cout << "NO" << endl;
return;
}
int ans = dinic.maxflow(s, t);
// cout << ans << endl;
if (ans == sum)
cout << "YES" << endl;
else
cout << "NO" << endl;
}
signed main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(12);
int T = 1;
cin >> T;
while (T--)
solve();
return 0;
}