给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。
一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。
返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。
示例 1:
输入:grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]]
输出:3
解释:有三个 1 被 0 包围。一个 1 没有被包围,因为它在边界上。
示例 2:
输入:grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]]
输出:0
解释:所有 1 都在边界上或可以到达边界。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 500
grid[i][j] 的值为 0 或 1
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/number-of-enclaves
思路:
1. 遍历矩阵四个边界的元素,若是遇到 1 的格子,则以该格子做深度遍历。直到所有相邻的 (上、下、左、右)陆地单元格均为 0 为止 2. 遍历矩阵 grid,记录grid一共有多少个 1 ,即为题目所求 本题需要 图的深度遍历 dfs
java:
- class Solution {
- public int numEnclaves(int[][] grid) {
- int m = grid.length;
- int n = grid[0].length;
-
- boolean[][] visited = new boolean[m][n];
-
- // 左右边界
- for(int i=0;i<m;i++) {
- if(grid[i][0] == 1) {
- gridDfs(grid,i,0,visited);
- }
- if (grid[i][n-1] == 1) {
- gridDfs(grid,i,n-1,visited);
- }
- }
-
- // 上下边界
- for(int j=0;j<n;j++) {
- if(grid[0][j] == 1) {
- gridDfs(grid,0,j,visited);
- }
- if(grid[m-1][j] == 1) {
- gridDfs(grid,m-1,j,visited);
- }
- }
- int result = 0;
-
- for(int i=0;i<m;i++) {
- for(int j=0;j<n;j++) {
- if(grid[i][j] == 1) {
- result += 1;
- }
- }
- }
-
- return result;
- }
-
- public void gridDfs(int[][] grid,int i, int j, boolean[][] visited){
- if(i<0 || j<0 || i> grid.length-1 || j>grid[0].length-1) {
- return;
- }
-
- if(grid[i][j] == 0 || visited[i][j]) {
- return;
- }
-
- visited[i][j] = true;
- grid[i][j] = 0;
-
- gridDfs(grid,i-1,j,visited);
- gridDfs(grid,i,j-1,visited);
- gridDfs(grid,i+1,j,visited);
- gridDfs(grid,i,j+1,visited);
-
- }
- }