一、前言
Zichen Wang, Vassilis N. Ioannidis, Huzefa Rangwala, Tatsuya Arai, Ryan Brand, Mufei Li, and Yohei Nakayama. 2022. Graph Neural Networks in Life Sciences: Opportunities and Solutions. In Proceedings ofthe 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), August14–18, 2022,Washington, DC, USA. ACM, NewYork, NY, USA, 2 pages. https://doi.org/10.1145/3534678.3542628
KeyWords: GNN,Drug Discovery,Knowledge Graph
图(或网络)在生命科学和医疗场景中无处不在,从分子相互作用图、信号转导通路到来自人口研究或真实世界数据的科学知识图、患者疾病干预关系图等,例如电子健康记录和保险索赔。图机器学习方法的最新进展(例如图神经网络 GNNs)已经改变了传统需要依赖于对生物医学网络进行描述性拓扑数据分析的各种问题(即把原来依赖