编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例 1:

图1、 搜索二维矩阵II示例图
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/search-a-2d-matrix-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解一、有序,二分查找
①带剪枝
- class Solution{
- public boolean searchMatrix(int[][] matrix, int target){
- for(int i = 0; i < matrix.length; i++){
- if(matrix[i][0] > target) break;
- else if(matrix[i][matrix[0].length - 1] < target) continue;
- int res = binarySearch(matrix[i], target);
- if(res != -1) return true;
- }
- return false;
- }
-
- public int binarySearch(int[] nums, int target){
- int left = 0;
- int right = nums.length - 1;
- while(left <= right){
- int mid = left + right >> 1;
- if(nums[mid] == target) return mid;
- else if(nums[mid] < target){
- left = mid + 1;
- }else{
- right = mid - 1;
- }
- }
- return -1;
- }
- }
② 有mid赋值left,注意mid是否需要+1
- class Solution{
- public boolean searchMatrix(int[][] matrix, int target){
- for(int i = 0; i < matrix.length; i++){
- int left = 0;
- int right = matrix[0].length - 1;
- while(left < right){
- int mid = left + right + 1 >> 1;
- if(matrix[i][mid] <= target) left = mid;
- else right = mid - 1;
- }
- if(matrix[i][right] == target) return true;
- }
- return false;
- }
- }
题解二、从右上角开始遍历,每次可去掉一行或一列(当前元素左边均比它小,下边均比它大)
- class Solution{
- public boolean searchMatrix(int[][] matrix, int target){
- int row = 0;
- int col = matrix[0].length - 1;
- while(row < matrix.length && col >= 0){
- if(matrix[row][col] == target) return true;
- else if(matrix[row][col] < target){
- row++;
- }else{
- col--;
- }
- }
- return false;
- }
- }