底层数据结构,1.7与1.8有何不同?
为何要用红黑树,为何一上来不树化?树化阈值为何是8?何时会树化?何时会退化为链表?
链表比较短的时候,查询性能并没有那么低,不用费劲把它转成红黑树,还浪费内存
要求
因为红黑树是自平衡二叉树。查询效率比较稳定;所以不用AVL平衡树
树化意义

树化规则
因为扩容后,计算下标是用hash值模数组长度,所以链表会缩短;但如果hash值原先都一样,再怎么扩容,长度也不会缩短。

按照字符串排序的(首字母),所以’10’<‘2’
退化规则
索引计算方法
数组容量为何是 2 的 n 次幂
注意
put 流程
1.7 与 1.8 的区别
链表插入节点时,1.7 是头插法,1.8 是尾插法
1.7 是大于等于阈值且没有空位时才扩容,而 1.8 是大于阈值就扩容
1.8 在扩容计算 Node 索引时,会优化
扩容(加载)因子为何默认是 0.75f
扩容死链(1.7 会存在)
1.7 源码如下:
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}





数据错乱(1.7,1.8 都会存在)
day01.map.HashMapMissData,具体调试步骤参考视频补充代码说明
- day01.map.HashMapDistribution 演示 map 中链表长度符合泊松分布
- day01.map.DistributionAffectedByCapacity 演示容量及 hashCode 取值对分布的影响
- day01.map.DistributionAffectedByCapacity#hashtableGrowRule 演示了 Hashtable 的扩容规律
- day01.sort.Utils#randomArray 如果 hashCode 足够随机,容量是否是 2 的 n 次幂影响不大
- day01.sort.Utils#lowSameArray 如果 hashCode 低位一样的多,容量是 2 的 n 次幂会导致分布不均匀
- day01.sort.Utils#evenArray 如果 hashCode 偶数的多,容量是 2 的 n 次幂会导致分布不均匀
- 由此得出对于容量是 2 的 n 次幂的设计来讲,二次 hash 非常重要
- day01.map.HashMapVsHashtable 演示了对于同样数量的单词字符串放入 HashMap 和 Hashtable 分布上的区别
key 的设计要求
如果 key 可变,例如修改了 age 会导致再次查询时查询不到
public class HashMapMutableKey {
public static void main(String[] args) {
HashMap<Student, Object> map = new HashMap<>();
Student stu = new Student("张三", 18);
map.put(stu, new Object());
System.out.println(map.get(stu));
stu.age = 19;
System.out.println(map.get(stu));
}
static class Student {
String name;
int age;
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Student student = (Student) o;
return age == student.age && Objects.equals(name, student.name);
}
@Override
public int hashCode() {
return Objects.hash(name, age);
}
}
}
String 对象的 hashCode() 设计
要求
扩容规则
ArrayList() 会使用长度为零的数组
ArrayList(int initialCapacity) 会使用指定容量的数组
public ArrayList(Collection extends E> c) 会使用 c 的大小作为数组容量
add(Object o) 首次扩容为 10,再次扩容为上次容量的 1.5 倍
addAll(Collection c) 没有元素时,扩容为 Math.max(10, 实际元素个数),有元素时为 Math.max(原容量 1.5 倍, 实际元素个数)
其中第 4 点必须知道,其它几点视个人情况而定
提示
day01.list.TestArrayList ,这里不再列出--add-opens java.base/java.util=ALL-UNNAMED 方能运行通过,后面的例子都有相同问题代码说明
- day01.list.TestArrayList#arrayListGrowRule 演示了 add(Object) 方法的扩容规则,输入参数 n 代表打印多少次扩容后的数组长度
要求
Fail-Fast 与 Fail-Safe
ArrayList 是 fail-fast 的典型代表,遍历的同时不能修改,尽快失败
CopyOnWriteArrayList 是 fail-safe 的典型代表,遍历的同时可以修改,原理是读写分离
提示
day01.list.FailFastVsFailSafe,这里不再列出要求
LinkedList
ArrayList
代码说明
- day01.list.ArrayListVsLinkedList#randomAccess 对比随机访问性能
- day01.list.ArrayListVsLinkedList#addMiddle 对比向中间插入性能
- day01.list.ArrayListVsLinkedList#addFirst 对比头部插入性能
- day01.list.ArrayListVsLinkedList#addLast 对比尾部插入性能
- day01.list.ArrayListVsLinkedList#linkedListSize 打印一个 LinkedList 占用内存
- day01.list.ArrayListVsLinkedList#arrayListSize 打印一个 ArrayList 占用内存
要求
更形象的演示,见资料中的 hash-demo.jar,运行需要 jdk14 以上环境,进入 jar 包目录,执行下面命令
java -jar --add-exports java.base/jdk.internal.misc=ALL-UNNAMED hash-demo.jar
- 1
Hashtable 对比 ConcurrentHashMap
ConcurrentHashMap 1.7
Segment(大数组) + HashEntry(小数组) + 链表,每个 Segment 对应一把锁,如果多个线程访问不同的 Segment,则不会冲突ConcurrentHashMap 1.8
Node 数组 + 链表或红黑树,数组的每个头节点作为锁,如果多个线程访问的头节点不同,则不会冲突。首次生成头节点时如果发生竞争,利用 cas 而非 syncronized,进一步提升性能