• 365天挑战LeetCode1000题——Day 073 最大二叉树 II 二叉树的右视图 路径总和 II 删除二叉搜索树中的节点


    998. 最大二叉树 II

    在这里插入图片描述

    代码实现(自解)

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    private:
        vector<int> deconstruct(TreeNode* root) {
            vector<int> ans;
            if (!root) return ans;
            ans.push_back(root->val);
            vector<int> left = deconstruct(root->left);
            vector<int> right = deconstruct(root->right);
            ans.insert(ans.begin(), left.begin(), left.end());
            ans.insert(ans.end(), right.begin(), right.end());
            return ans;
        }
    
        TreeNode* construct(vector<int>& nums) {
            if (!nums.size()) return NULL;
            auto it = max_element(nums.begin(), nums.end());
            TreeNode* root = new TreeNode(*it);
            vector<int> left = {nums.begin(), it};
            vector<int> right = {it + 1, nums.end()};
            root->left = construct(left);
            root->right = construct(right);
            return root;
        }
    public:
        TreeNode* insertIntoMaxTree(TreeNode* root, int val) {
            vector<int> ans = deconstruct(root);
            ans.push_back(val);
            return construct(ans);
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41

    199. 二叉树的右视图

    在这里插入图片描述

    代码实现(自解)

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<int> rightSideView(TreeNode* root) {
            vector<int> ans;
            queue<TreeNode*> myQueue;
            if (!root) return ans;
            myQueue.push(root);
            while (!myQueue.empty()) {
                int sz = myQueue.size();
                while (sz--) {
                    TreeNode* tmp = myQueue.front();
                    myQueue.pop();
                    if (tmp->left) myQueue.push(tmp->left);
                    if (tmp->right) myQueue.push(tmp->right);
                    if (!sz) ans.push_back(tmp->val);
                }
            }
            return ans;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31

    112. 路径总和

    在这里插入图片描述

    代码实现(自解)

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class state {
    public:
        TreeNode* root;
        vector<int> path;
        int sum;
        state(TreeNode* root) : root(root) {};
        state(TreeNode* root, state fa) : root(root), path(fa.path) {
            path.push_back(this->root->val);
            sum = fa.sum + this->root->val;
        }
    };
    
    class Solution {
    public:
        bool hasPathSum(TreeNode* root, int targetSum) {
            vector<vector<int>> ans;
            queue<state> myQueue;
            if (!root) return false;
            state root_state(root);
            root_state.path.push_back(root->val);
            root_state.sum = root->val;
            myQueue.push(root_state);
            while (!myQueue.empty()) {
                int sz = myQueue.size();
                while (sz--) {
                    state tmp = myQueue.front();
                    myQueue.pop();
                    if (!tmp.root->left && !tmp.root->right) {
                        if (tmp.sum == targetSum) {
                            return true;
                        }
                    }
                    if (tmp.root->left) {
                        state left(tmp.root->left, tmp);
                        myQueue.push(left);
                    }
                    if (tmp.root->right) {
                        state right(tmp.root->right, tmp);
                        myQueue.push(right);
                    }
                }
            }
            return false;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56

    113. 路径总和 II

    在这里插入图片描述

    代码实现(自解)

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class state {
    public:
        TreeNode* root;
        vector<int> path;
        int sum;
        state(TreeNode* root) : root(root) {};
        state(TreeNode* root, state fa) : root(root), path(fa.path) {
            path.push_back(this->root->val);
            sum = fa.sum + this->root->val;
        }
    };
    
    class Solution {
    public:
        vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
            vector<vector<int>> ans;
            queue<state> myQueue;
            if (!root) return ans;
            state root_state(root);
            root_state.path.push_back(root->val);
            root_state.sum = root->val;
            myQueue.push(root_state);
            while (!myQueue.empty()) {
                int sz = myQueue.size();
                while (sz--) {
                    state tmp = myQueue.front();
                    myQueue.pop();
                    if (!tmp.root->left && !tmp.root->right) {
                        if (tmp.sum == targetSum) {
                            ans.push_back(tmp.path);
                            continue;
                        }
                    }
                    if (tmp.root->left) {
                        state left(tmp.root->left, tmp);
                        myQueue.push(left);
                    }
                    if (tmp.root->right) {
                        state right(tmp.root->right, tmp);
                        myQueue.push(right);
                    }
                }
            }
            return ans;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57

    450. 删除二叉搜索树中的节点

    在这里插入图片描述

    代码实现(自解)

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        TreeNode* deleteNode(TreeNode* root, int key) {
            if (!root) return nullptr;
            if (root->val != key) {
                root->left = deleteNode(root->left, key);
                root->right = deleteNode(root->right, key);
                return root;
            }
            else {
                if (!root->left && !root->right) return nullptr;
                if (root->left && root->right) {
                    TreeNode* tmp = root->left;
                    TreeNode* pre = tmp;
                    if (!tmp->right) {
                        root->val = tmp->val;
                        root->left = tmp->left;
                    }
                    while (tmp->right) {
                        pre = tmp;
                        tmp = tmp->right;
                    }
                    TreeNode* tmp1 = tmp->left;
                    // 左节点接到要删除的结点的父节点的右边
                    pre->right = tmp1;
                    // 将要删除的结点的值赋给原结点
                    root->val = tmp->val;
                    return root;
                }
                else {
                    if (root->left) return root->left;
                    if (root->right) return root->right;
                }
            }
            return root;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
  • 相关阅读:
    JS DataTable中导出PDF右侧列被截断的问题解决
    maven
    小白入门STM32----手机蓝牙控制STM32单片机点亮LED
    【报错】django.db.migrations.exceptions.NodeNotFoundError:
    Nacos的长轮询实践
    【TCP】粘包问题 以及 异常处理
    【Uniapp小程序】自定义导航栏uni-nav-bar滚动渐变色
    GPT与R 在生态环境领域数据统计分析
    【QT】Dialog对话框
    完全自定义MaterialButtonToggleGroup颜色。
  • 原文地址:https://blog.csdn.net/ShowMeTheCod3/article/details/126597561